Знаки «плюс», «минус» и «равно»

В середине этого простого выражения стоит знак равенства, поэтому оно называется уравнением:

7–2 = 4 + 1

Результат вычитания с левой стороны идентичен сумме чисел с правой стороны; оба равны 5. Суть алгебры в том, чтобы расположить определенным образом числа и буквы в уравнении и получить ответ.

Каждое число может быть либо положительным, либо отрицательным.

Перед отрицательными числами обязательно нужно ставить знак «–». Перед положительными числами тоже положено ставить знак «+», но делать мы это будем не всегда.

Уравнение можно представить себе в виде доски-качалки, где знак «равно» – точка опоры. Положительные числа – это грузы, прижимающие доску к земле, а отрицательные – воздушные шары, тянущие ее вверх.

7 ? 2 = 4 + 1

Если хотите переместить числа с места на место на одном конце доски, их знаки нужно перемещать вместе с ними. Поменяв местами числа с левой стороны, получим:

?2 + 7 = 4 + 1

Знак «минус» должен оставаться перед числом 2, иначе уравнение станет неверным. Перед 7 появился знак «плюс» как напоминание, что оно положительное. Предположим, что нам нужно оставить в левой части уравнения только число +7. Существует всего одно золотое правило.

С уравнением можно делать все что угодно[8] при условии, что с его обеими частями производятся одни и те же действия.

Чтобы в левой части осталось только +7, нужно избавиться от –2. Для этого добавим +2; однако, согласно правилу, это число нужно добавить к обеим частям уравнения.

?2 +7 +2 = 4 + 1 + 2

?2 и +2 с левой стороны уравнения взаимоуничтожатся, то есть дадут 0. С правой же стороны +2 останется, и мы получим:

7 = 4 + 1 + 2

Выполнив подсчеты, вы убедитесь, что 7 и вправду равняется 4 + 1 + 2. При этом мы продемонстрировали маленькую хитрость.

При переносе числа через знак равенства меняется его знак! То есть «?» меняется на «+», а «+» на «?».

Вот еще одна вещь, которую можно показать на примере доски-качалки: вы можете менять две части уравнения местами:

4 + 1 + 2 = 7