К разделу 8
38. Исследовать особенности каустики (огибающей семейства нормалей) трехосного эллипсоида.
39. Исследовать особенности каустики — огибающей семейства геодезических на эллипсоиде, выходящих из одной точки.
40. Доказать, что каустика — огибающая семейства геодезических любой римановой метрики общего положения на сфере, выходящих из одной точки, имеет не менее четырех точек возврата.
41. Доказать, что объединение касательных прямых к кривой {(t2, t3, t4)} диффеоморфно множеству многочленов х4 + ах2 + bх + с, имеющих кратные вещественные корни.
42. Доказать, что гладкая функция f (а, b, с), производная которой по а в начале координат отлична от нуля, приводится в окрестности начала координат к виду ± а + const гладкой заменой координат, сохраняющей ласточкин хвост предыдущей задачи.
43. Доказать, что гладкое векторное поле, вектор которого в начале координат имеет ненулевую с-компоненту, приводится в окрестности начала координат к полю ± ?/?с (задающему систему а = 0, b = 0, с = ±1) гладкой заменой координат, сохраняющей ласточкин хвост двух предыдущих задач.
44. Пусть большая каустика в трехмерном пространстве-времени образована теми значениями параметра q = (q1, q2, q3), при которых функция х4 + q1х2 + сх имеет вырожденные критические точки. Нарисовать перестройки мгновенных каустик, получающихся при пересечении большой каустики изохронами, для функции времени t = q1 ± q23.
45. Доказать, что функция времени общего положения приводится в окрестности каждой точки большой каустики предыдущей задачи, либо к виду t = q3 + const, либо к виду t = ± q1 ± q23 + const сохраняющим эту большую каустику диффеоморфизмом пространства-времени.
46. Пусть большая каустика в четырехмерном пространстве-времени образована теми значениями параметра q = (q1, q2, q4), при которых функция х4 + q1x2 + q2х имеет вырожденные критические точки. Исследовать перестройки мгновенных каустик, получающихся при пересечении большой каустики изохронами, для функции времени t = q1 ± q23 ± q24.
47. Нарисовать поверхность, образованную теми значениями параметра q, при которых функция х2у ± у3 + q1y2 + q2y + q3x имеет вырожденные критические точки.
48. Пусть большая каустика в четырехмерном пространстве-времени образована теми значениями параметра q, при которых функция х2у + у4 + q1y3 + q2y2 + q3y + q4x имеет вырожденные критические точки. Исследовать перестройки мгновенных каустик, получающихся при пересечении большой каустики изохронами различных функций времени общего положения.
49. Нарисуйте образ плоскости (u, ?) и ее разбиения на прямые u = const (или на кривые t = const, где ?t/?u ? 0) при отображении (u, ?) ? (u2, ?, u?) в трехмерное пространство. Сравните ответ с рис. 46 и с рис. 31.
50. Нарисуйте образ поверхности общего положения с полукубическим ребром возврата при отображении складывания трехмерного пространства (u, ?, ?) ? (u, ?, ?2) (предполагая, что касательная плоскость поверхности в точке трансверсального пересечения ребра возврата с плоскостью критических точек ? = 0 не содержит направления оси ?). Сравните ответ с рис. 46.
51. Нарисуйте поверхность у2 = z3х2 и сравните ответ с рис. 46 и с предыдущей задачей.
52. Нарисуйте объединение касательных к кривой {(t, t2, t4)} и сравните с предыдущими задачами.
53. Докажите, что объединение касательных к прост ранственной кривой общего положения локально диффеоморфно поверхности у2 = z3x2 в окрестности каждой точки, где кручение кривой обращается в нуль.
Лето — время эзотерики и психологии! ☀️
Получи книгу в подарок из специальной подборки по эзотерике и психологии. И скидку 20% на все книги Литрес
ПОЛУЧИТЬ СКИДКУ