Во глубину платоновской пещеры
Знаменитый английский математик и философ Альфред Норт Уайтхед (1861–1947) однажды заметил, что «самое надежное обобщение, которое можно сделать при изучении истории западной философии, – что вся она представляет собой примечания к Платону» (Whitehead 1929).
И в самом деле, Платон (ок. 428–347 гг. до н. э.) первым свел воедино самые разные темы – от математики, науки и лингвистики до религии, этики и искусства – и понял, что нужно подходить к ним одинаково, в результате чего, собственно, и появилась философия как научная дисциплина. Философия для Платона была не каким-то отвлеченным предметом, который стоит особняком от повседневной жизни, а общим руководством, как нужно проживать жизнь, как отличать истину ото лжи и как строить политику. В частности, Платон считал, что философия способна открыть перед нами царство истин, которое простирается далеко за пределы того, что мы воспринимаем при помощи органов чувств, и даже того, что мы можем вывести на основании простого здравого смысла. Кто же был этот неутомимый искатель чистого знания, абсолютного блага и вечных истин?[15]
Платон, сын Аристона и Периктионы, родился в Афинах или в Эгине. На рис. 7 приведена герма Платона – скорее всего, копия с более раннего греческого оригинала, созданного в IV веке до н. э. Платон был весьма родовит и по отцовской, и по материнской линии: среди его предков были прославленные исторические деятели, в частности великий законодатель Солон и последний царь Аттики Кодр. Дядя Платона Хармид и двоюродный брат Критий были старыми друзьями знаменитого философа Сократа (ок. 470–399 гг. до н. э.) – многие исследователи полагают, что это знакомство в основном и сформировало взгляды юного Платона. Поначалу Платон хотел стать политиком, однако партия, взгляды которой ему тогда импонировали, была замешана в насильственных действиях, и это отвратило его от политического поприща. Именно нелюбовь к политике, вероятно, и побудила Платона в последующие годы изложить свои представления о том, каким должно быть фундаментальное образование государственных мужей будущего. Он даже попытался быть наставником правителя Сиракуз Дионисия II, впрочем, к успеху это не привело.
Рис. 7
После казни Сократа в 399 году до н. э. Платон отправился в длительное путешествие, которое завершилось лишь с основанием его легендарной научно-философской школы, Академии, около 387 года до н. э. Платон возглавлял Академию (был ее схолархом) до самой своей смерти; на посту его сменил Спевсипп, приходившийся ему племянником. Академия, в отличие от современных научно-образовательных учреждений, была скорее неформальным клубом интеллектуалов, которые под руководством Платона изучали самые разные предметы. Не было ни платы за обучение, ни устоявшегося учебного планая – не было даже преподавателей в привычном нам смысле слова. Однако же те, кто хотел поступить в Академию, должны были удовлетворять одному довольно необычному требованию. Согласно речи императора Юлиана Отступника, правившего в IV веке (уже нашей эры), над входом в Академию Платона висела массивная доска с надписью. Надпись гласила: «Не геометр да не войдет!»[16]. Поскольку с основания Академии до первого описания ее девиза прошло не меньше 800 лет, нет никакой уверенности, что надпись вообще существовала. Однако не приходится сомневаться, что выраженная в этом требовании идея отражает личное мнение Платона. В одном из своих знаменитых диалогов «Горгий» Платон пишет: «… Как много значит и меж богов, и меж людей равенство, – я имею в виду геометрическое равенство» (пер. С. Маркиша).
«Студенты» Академии по большей части сами себя обеспечивали, и некоторые, в том числе, например, великий Аристотель, оставались там лет по двадцать. Платон считал, что такое длительное общение творческих умов – лучшее средство для порождения новых идей в самых разных сферах, от отвлеченной метафизики и математики до этики и политики. Чистота помыслов и божественная возвышенность учеников Платона прекрасно отражены на картине «Школа Платона» бельгийского художника-символиста Жана Дельвиля (1867–1953). Чтобы подчеркнуть духовное совершенство учеников, Дельвиль изобразил их обнаженными, с андрогинными телами, поскольку именно таковы должны были быть первые люди.
Когда я узнал, что археологи не смогли найти никаких следов Академии Платона, то очень огорчился[17]. Летом 2007 года я побывал в Греции и решил найти какой-нибудь заменитель. Платон упоминает, что его излюбленным местом для бесед с друзьями была Стоя Зевса (крытая галерея, выстроенная в V веке до н. э.). Я нашел развалины этой стои в северо-западной части древней афинской агоры, которая была центром общественной жизни города (рис. 8). Признаться, даже при сорокапятиградусной жаре меня пробрал холодок, когда я шагнул на те же каменные плиты, где сотни и даже тысячи раз ступала нога этого великого человека.
Рис. 8
Легендарная надпись над входом в Академию прямо и недвусмысленно говорит об отношении Платона к математике. Более того, львиная доля значительных математических исследований, которые велись в IV веке до н. э., были так или иначе связаны с Академией. Однако сам Платон не обладал ни математическими талантами, ни какими-либо существенными инженерными задатками, и непосредственный его вклад в развитие математических наук был, пожалуй, совсем невелик. Платон был скорее восторженным зрителем, вдохновителем и руководителем, поставщиком интересных задач и образованным критиком. Философ и историк Филодем, живший в I веке, рисует ясную картину: «В то время математика стремительно двигалась вперед, причем Платон, словно главный зодчий, ставил задачи, а математики усердно исследовали их» (см. Cherniss 1945, Mekler 1902). А математик и философ-неоплатоник Прокл добавляет: «…И геометрия, равно как и прочие математические науки, получила его [Платона] стараниями величайшее развитие: известно, сколь часто он использует в своих сочинениях математические рассуждения и повсюду пробуждает ими восторг в преданных философии» (Cherniss 1945, Proclus ca. 450). Иначе говоря, Платон, чьи познания в математике были достаточно широкими для своего времени, беседовал с математиками на равных и ставил им задачи, хотя его личные заслуги в развитии математики были незначительны.
Еще один яркий пример любви Платона к математике мы находим в его, пожалуй, лучшей книге – «Государство», где этика, эстетика, политика и метафизика сведены в единую систему головокружительной красоты. Главный герой «Государства» – Сократ, однако в книге VII именно Платон предлагает смелый план воспитания и образования будущих правителей утопических государств. Это строгая, пусть и несколько идеализированная программа предполагает обучение с самых ранних лет посредством игр, путешествий и физических упражнений. Затем подающих надежды детей отбирают и не менее десяти лет учат математике и пять лет – диалектике, после чего они в течение пятнадцати лет набираются практического опыта, то есть служат военачальниками и предаются другим занятиям, подобающим молодежи. Платон подробно объясняет, почему он считает, что именно так следует воспитывать и обучать будущих политиков (Plato ca. 360 ВС.).
Однако не следует, чтобы к власти приходили те, кто прямо-таки в нее влюблен. А то с ними будут сражаться соперники в этой любви… Кого же иного заставишь ты встать на страже государства, как не тех, кто вполне сведущ в деле наилучшего государственного правления, а вместе с тем имеет и другие достоинства и ведет жизнь более добродетельную, чем ведут государственные деятели? (Здесь и далее пер. А. Егунова.)
Освежает, правда? По правде говоря, такая строгая и трудоемкая программа обучения во времена Платона была, пожалуй, неосуществима, однако Джордж Вашингтон тоже считал, что будущих политиков хорошо бы обучать математике и философии.
Мало того, что без науки о числах в той или иной степени невозможно сделать ни шагу в цивилизованной жизни, – исследование математических истин приучает ум к методу и точности выводов; подобное занятие весьма подобает существу разумному. Когда бытие затуманено и растерянному исследователю столь многое представляется неясным – именно тогда находит себе опору дар рационального мышления. С прочной позиции математического и философского доказательства мы незаметно переходим к куда более благородным умозаключениям и тонким раздумьям (Washington 1788).
Что же касается вопроса о природе математики, Платон-философ сыграл здесь даже более важную роль, чем Платон-математик. Здесь его идеи, оставившие ярчайший след, не просто ставят его выше всех математиков и философов его поколения, но и делают самой влиятельной фигурой последующих тысячелетий.
Представление Платона о том, что такое на самом деле математика, имеет прямое отношение к его знаменитой «аллегории Пещеры». Платон подчеркивает, как опасно доверять сведениям, полученным посредством органов чувств человека. Он утверждает, что то, что мы воспринимаем как реальный мир, на самом деле не более реально, чем тени, отбрасываемые на стены пещеры[18]. Приведу этот примечательный отрывок из «Государства».
…Посмотри-ка: ведь люди как бы находятся в подземном жилище наподобие пещеры, где во всю ее длину тянется широкий просвет. С малых лет у них там на ногах и на шее оковы, так что людям не двинуться с места, и видят они только то, что у них прямо перед глазами, ибо повернуть голову они не могут из-за этих оков. Люди обращены спиной к свету, исходящему от огня, который горит далеко в вышине, а между огнем и узниками проходит верхняя дорога, огражденная – глянь-ка – невысокой стеной вроде той ширмы, за которой фокусники помещают своих помощников, когда поверх ширмы показывают кукол… Так представь же себе и то, что за этой стеной другие люди несут различную утварь, держа ее так, что она видна поверх стены; проносят они и статуи, и всяческие изображения живых существ, сделанные из камня и дерева… Разве ты думаешь, что, находясь в таком положении, люди что-нибудь видят, свое ли или чужое, кроме теней, отбрасываемых огнем на расположенную перед ними стену пещеры?
Согласно Платону, все мы – все человечество – не слишком отличаемся от этих узников в пещере, которые принимают тени за реальность (на рис. 9 приведена гравюра Яна Санредама, иллюстрирующая эту аллегорию (1604)). В частности, подчеркивает Платон, математические истины относятся не к окружностям, треугольникам и квадратам, которые можно нарисовать на клочке папируса или начертить палочкой на песке, а к абстрактным объектам, которые пребывают в идеальном мире – вместилище подлинных форм и совершенств. Этот платоновский мир математических понятий отделен от мира физического, и именно там, в этом первом мире, верны математические суждения наподобие теоремы Пифагора. Прямоугольный треугольник, который мы чертим на бумаге, лишь несовершенная копия, приближение к истинному, абстрактному треугольнику.
Рис. 9
Другая фундаментальная проблема, которую Платон подробно исследовал, – это природа математического доказательства как процесса, основанного на аксиомах и постулатах. Аксиомы – это основополагающие утверждения, истинность которых считается самоочевидной. Например, первая аксиома евклидовой геометрии гласит: «Между любыми двумя точками можно провести прямую». В «Государстве» Платон прекрасно сочетает понятия о постулатах и о мире математических форм.
…Я думаю, ты знаешь, что те, кто занимается геометрией, счетом и тому подобным, предполагают в любом своем исследовании, будто им известно, что такое чет и нечет, фигуры, три вида углов и прочее в том же роде. Это они принимают за исходные положения и не считают нужным отдавать в них отчет ни себе, ни другим, словно это всякому и без того ясно. Исходя из этих положений, они разбирают уже все остальное и последовательно доводят до конца то, что было предметом их рассмотрения… Но ведь когда они вдобавок пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили. Так и во всем остальном. То же самое относится к произведениям ваяния и живописи: от них может падать тень, и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть не иначе как мысленным взором (курсив мой. – М. Л.).
Представления Платона заложили основу платонизма – такое название получили его идеи в философии вообще и в проблеме природы математики в частности[19]. Платонизм в самом широком смысле слова предполагает веру в некие вечные, незыблемые абстрактные объекты, абсолютно независимые от эфемерного мира, которые мы воспринимаем посредством органов чувств. Согласно платонизму, реальное существование математических понятий – столь же объективный факт, сколь и существование самой Вселенной. Существуют не только натуральные числа, окружности и квадраты, но и мнимые числа, функции, фракталы, неевклидовы геометрии, бесконечные множества, а также самые разные теоремы, которые их описывают. Короче говоря, каждое математическое понятие или «объективно истинное» суждение (подробнее об этом чуть позже), когда бы то ни было сформулированные или возникшие в чьем-то воображении, и бесконечное количество понятий и утверждений, еще не открытых, – все это абсолютные сущности, или универсалии, которые нельзя ни создать, ни уничтожить. Они существуют независимо от наших знаний о них. Нет нужды говорить, что это не физические объекты, они обитают в автономном мире вечных сущностей. Математики для платонизма – исследователи неведомых земель, они могут лишь открыть математические истины, но не изобрести их. Америка существовала задолго до того, как ее открыл Колумб (или Лейф Эриксон), – так и математические теоремы существовали в платоновском мире задолго до того, как вавилоняне приступили к математическим изысканиям. Для Платона подлинно, в полной мере существуют лишь эти абстрактные математические формы и идеи, поскольку лишь в математике, по его мнению, можно обрести совершенно точные и объективные познания. Следовательно, по Платону, математика тесно связана с божественным (подробнее об этом см. Mueller 2005). В диалоге «Тимей» бог-творец формирует мир при помощи математики, а в «Государстве» знание математики становится главным шагом на пути к познанию божественных форм. Платон не применяет математику для формулировки некоторых законов природы, которые можно проверить экспериментально. Для него математический характер мира – всего лишь следствие того, что «Бог всегда остается геометром».
Платон распространил идеи «истинных форм» и на другие дисциплины, в особенности на астрономию. Он считал, что при изучении подлинной астрономии «мы должны оставить небеса в покое»[20] и не пытаться рассчитывать взаимное положение и видимое движение звезд. Платон полагал, что истинная астрономия – это наука, изучающая законы движения в некоем идеальном математическом мире, движения, для которого наблюдаемые небеса – лишь иллюстрация (в том же смысле, в каком геометрические фигуры, начерченные на папирусе, лишь иллюстрируют истинные фигуры).
Представления Платона об астрономических исследованиях казались противоречивыми даже некоторым самым убежденным платоникам. Сторонники его идей утверждали, что на самом деле Платон считает не что подлинная астрономия должна заниматься какими-то идеальными небесами, не имеющими отношения к наблюдаемым, но что ее задача – изучать реальное движение небесных тел, а не искаженное, какое мы наблюдаем с Земли. Однако многие мыслители указывают, что, если понимать максиму Платона слишком буквально, это сильно затруднило бы развитие наблюдательной астрономии как науки. Впрочем, как бы мы ни толковали отношение Платона к астрономии, во всем, что касается основ математики, платонизм играет ведущую роль.
Но существует ли платоновский мир математики на самом деле? И если да, то, собственно, где? И что это за «объективно истинные» утверждения, которые населяют этот мир? Или же математики, которые придерживаются платонизма, просто выражают те же романтические представления, каких, как говорят, придерживался великий художник Возрождения Микеланджело? Согласно легенде, Микеланджело был убежден, что его великолепные скульптуры уже существуют в глубине мраморных глыб, а его задача – лишь стесать все лишнее.
Современные платоники (да-да, они есть, и их представления мы подробно опишем в следующих главах) настаивают, что платоновский мир математических форм совершенно реален, и предлагают конкретные, по их мнению, примеры объективно истинных математических утверждений, которые обитают в этом мире.
Рассмотрим следующее простое и понятное утверждение. Каждое четное целое число больше двух можно представить в виде суммы двух простых чисел (делящихся только на себя и единицу). Это несложное на первый взгляд утверждение называется проблемой Гольдбаха, поскольку именно в такой формулировке обнаружено в письме прусского математика-любителя Кристиана Гольдбаха (1690–1764) Леонарду Эйлеру от 7 июня 1742 года. Убедиться в верности этого утверждения для первых нескольких четных чисел совсем не трудно: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 (или 5 + 5); 12 = 5 + 7; 14 = 3 + 11 (или 7 + 7); 16 = 5 + 11 (или 3 + 13) и так далее. Утверждение это до того просто, что британский математик Г. Г. Харди объявил, что «любой дурак мог бы догадаться». Более того, французский математик и философ Рене Декарт высказал это предположение еще до Гольдбаха. Однако выяснилось, что сформулировать проблему легко, а вот доказать – совсем другое дело. В 1966 году китайский математик Чэнь Цзинжунь сделал существенный шаг по пути к доказательству. Он сумел показать, что всякое достаточно большое четное число представляет собой сумму двух чисел, одно из которых простое, а второе имеет не более двух простых делителей. К концу 2005 года португальский ученый Томаш Оливейра э Сильва показал, что это утверждение верно для чисел, не превышающих 3 ? 1017 (до трехсот тысяч триллионов). И все же, несмотря на колоссальные усилия многих талантливых математиков, на сегодняшний день, когда я пишу эти строки, общее доказательство так и не удалось найти. К желаемому результату не привел даже дополнительный стимул в виде миллиона долларов, которые предложили в виде награды всякому, кто найдет доказательство в срок с 20 марта 2000 года по 20 марта 2002 года (в рамках рекламной кампании романа А. К. Доксиадиса «Дядюшка Петрос и проблема Гольдбаха» [Doxiadis 2000]).
Тут-то перед нами и встает вопрос о значении «объективной истины» в математике. Предположим, что в 2016 году все же будет представлено строгое доказательство проблемы Гольдбаха. Можно ли будет тогда сказать, что это утверждение было верным уже тогда, когда о нем задумался Декарт? Многие, наверное, согласятся, что это глупый вопрос. Ясно, что если истинность утверждения доказана, значит, оно всегда было истинным, даже до того, как мы в этом убедились. Или рассмотрим другой невинный на вид пример – гипотезу Каталана (подробнее см. Ribenboim 1994). Числа 8 и 9 – последовательные целые числа, и каждое из них равно степени натурального числа – 8 = 23 и 9 = 32. В 1844 году бельгийский математик Эжен Шарль Каталан (1814–1894) предположил, что среди всех возможных степеней целых чисел лишь одна пара последовательных чисел, за исключением 0 и 1, представляет собой степени других целых чисел, и это 8 и 9. Иными словами, можно хоть всю жизнь записывать все целые степени, однако не найдешь другой пары таких чисел, которые различаются на 1. На самом деле, еще в 1342 году франко-еврейский философ и математик Леви бен Гершом (1288–1344) доказал малую часть этой гипотезы: он показал, что 8 и 9 – это единственные степени 2 и 3, которые различаются на 1. Большой шаг вперед был сделан математиком Робертом Тейдеманом в 1976 году. И все же доказательство гипотезы Каталана в общем виде ставило в тупик лучшие математические умы вот уже более 150 лет. Но вот наконец 18 апреля 2002 года румынский математик Преда Михайлеску представил полное доказательство гипотезы. Оно было опубликовано в 2004 году и на сегодня полностью принято математическим сообществом. И снова можно задаться вопросом: когда гипотеза Каталана стала истинной: в 1342 году? В 1844? В 1976? В 2002? В 2004? Разве не очевидно, что это утверждение всегда было истинным, хотя мы не знали, что оно истинно? Именно такого рода утверждения платоники и называют «объективными истинами».
Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).
Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.
Предсказание Белла не сбылось. Хотя в науке и появились догмы, диаметрально противоположные платонизму (правда, противоположные, если можно так выразиться, с разных сторон), им не удалось полностью завоевать умы (и сердца!) всех математиков и философов, и раскол между ними в наши дни остался прежним.
Однако давайте предположим, что в один прекрасный день платонизм победил, и все мы стали убежденными платониками. Объясняет ли платонизм «непостижимую эффективность» математики при описании нашего мира? Не совсем. Почему физическая реальность ведет себя в соответствии с законами, обретающимися в абстрактном платоновском мире? Ведь в этом, в сущности, и состоит одна из загадок Пенроуза, а Пенроуз – убежденный платоник. Так что пока придется нам смириться с фактом, что даже если бы все мы стали сторонниками платонизма, тайна могущества математики осталась бы тайной. По словам Вигнера: «Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем чудо, состоящее в способности человеческого разума нанизывать один за другим тысячи аргументов, не впадая при этом в противоречие».
Чтобы вполне оценить масштабы этого чуда, нам придется углубиться в жизнь и наследие самих чудотворцев – блистательных умов, которым мы обязаны открытием множества неимоверно точных математических законов природы.