Касательно касательных

Математика – это язык, на котором говорит наука. Стоит ли удивляться, что большинство законов природы описываются с помощью математического алфавита? Исчисление – один из способов познать суть вещей, то, как они изменяются, развиваются, движутся. Эту главу мы посвятим измерению скорости, с которой изменяются функции, и изучению теории приближений – примерной оценки (аппроксимации) сложных и простых полиномиальных функций (многочленов). А еще исчисление – мощное средство оптимизации. Это наиболее эффективный способ подобрать такие величины и порядок работы с ними, которые дадут оптимальный результат. (Например, если мы планируем доходы или надеемся выжать максимум при минимуме затраченных усилий, результат должен быть наибольшим, а если хотим сэкономить или ищем кратчайший путь из точки А в точку Б, – наименьшим.)

Предположим, что у вас есть лист картона размером 12 на 12 см (см. рисунок). Наша задача – сделать из него лоток, для чего нам нужно от каждого из четырех углов отрезать по квадратику размером x на x сантиметров. Чему должен быть равен x, чтобы у нас получился максимально вместительный лоток?

Представим объем как функцию x. Площадь основания лотка равна (12 – 2x)(12 – 2x), а высота его стенок – x. Значит, объем можно посчитать как

V = (12 – 2x)?xx

кубических сантиметров. Значение x должно быть таким, чтобы значение V было максимальным. Однако в крайности впадать не следует: при x = 0 или x = 6 объем лотка будет нулевым. Значит, оптимальный результат лежит где-то между этими двумя значениями.

Попробуем графический подход – визуализируем функцию y = (12 – 2x)?x для значений x в диапазоне от 1 до 6. При x = 1 объем составит y = 100; при x = 2 – y = 128; при x = 3 – y = 108. Значение x = 2 выглядит многообещающе, но что, если в диапазоне от 1 до 3 есть другая действительная величина, которая подойдет нам еще лучше?

Влево от максимума функция растет, вправо – уменьшается. Слева значение ее наклона положительное, справа – отрицательное. В самой верхней точке не происходит ничего – функция в ней словно застыла в нерешительности, выбирая, куда направиться: вверх или все-таки вниз. Поэтому через нее можно смело провести горизонтальную (то есть с нулевым наклоном) касательную. Именно ее – такую оптимальную точку – мы и будем искать в этой главе.

А заодно мы коснемся касательных, и для этого нам придется среза?ть углы, причем не только в переносном, но и вполне себе прямом (как мы это делали только что в задачке про лоток) смысле.

Исчисление – штука непростая и громоздкая: у вас вряд ли получится найти по ней учебник меньше, чем на тысячу страниц. В нашем же распоряжении их едва ли больше 20, поэтому единственное, что мы успеем – так это чуть-чуть посветить спичкой в темной комнате. Все, что нам предстоит увидеть, – дифференциальный аспект исчисления, касающийся функций; интегральную же сторону, необходимую для того, чтобы подсчитывать площади и объемы сложных объектов, придется оставить пылиться в углу.

Начнем с самого простого – функций, представленных прямыми. В главе 2 мы уже говорили о том, что наклон графика линейной функции y = mx + b равен m. Следовательно, при росте значения x на единицу y будет увеличиваться на m. Допустим, наклон y = 2x + 3 равен 2. Увеличив x на 1 (скажем, с x = 10 до x = 11), мы тем самым увеличим y на 2 (то есть с 23 до 25).

На графике ниже проведено несколько разных линий. Диагональная функция y = –x имеет наклон –1, а горизонтальная y = 5 – наклон 0.

Задав две точки, мы можем провести через них прямую. Ее наклон можно определить, не прибегая к формуле самой прямой, – достаточно взять координаты точек (x1, y1) и (x2, y2) и вставить их в уравнение

позволяющее узнать отношение приращения функции к приращению аргумента.

Для примера возьмем линию y = 2x + 3 и две ее точки с координатами (0, 3) и (4, 11). Ее наклон составит

= (11 – 3)/(4 – 0) = 8/4 = 2 – тот же ответ, к которому мы можем прийти с помощью уравнения прямой.

Теперь рассмотрим функцию y = x? + 1, изображенную на графике внизу. Это не прямая: мы можем проследить, как постоянно меняется ее наклон. А вот касательная, проходящая через точку (1, 2) – прямая. Попробуем определить ее наклон.

Для этого нам нужны хотя бы две точки. Что же делать? Придется взять еще одну линию – такую, которая пересекает кривую функции как минимум дважды (так называемую секущую). Приняв x = 1,5, мы получаем y = (1,5)? + 1 = 3,25. Согласно уже рассмотренной нами формуле, наклон секущей составляет

Для более точного результата переместим вторую точку как можно ближе к (1, 2). Скажем, если x = 1,1, то y = (1,1)? + 1 = 2,21, а наклон секущей – m = (2,21 – 2)/(1,1 – 1) = 2,1. Посмотрите на таблицу: при постепенном приближении второй точки к (1, 2), наклон секущей будет столь же постепенно приближаться к 2.

Посмотрим, что происходит, когда x = 1 + h (при h ? 0), но лишь чуть-чуть отличается от x = 1. Тогда y = (1 + h)? + 1 = 2 + 2h + h?, а наклон секущей составит

То есть при приближении h к 0 наклон графика функции будет приближаться к 2. В записи это выглядит так:

Подобным представлением мы хотим сказать, что предел 2 + h при значении h, стремящемся к 0, равен 2. Так мы и узнаем наклон касательной к кривой y = x? + 1 в точке (1, 2) – 2.

А вот как все это выглядит в обобщенном виде. Нам нужно найти наклон касательной к кривой y = f(x) в точке (x, f(x)). Как видно на графике, наклон секущей, проходящей через точку (x, f(x)) и соседнюю с ней (x + h, f(x + h)), составляет

Представим наклон касательной, проходящей через точку (x, f(x)), как f?(x):

Выглядит не очень-то понятно, поэтому давайте возьмем парочку более конкретных примеров. Для прямой линии y = mx +b, а f(x) = mx + b. Чтобы найти f(x + h), нужно заменить x на x + h – это позволит нам подсчитать f(x + h) = m(x + h) + b. Следовательно, наклон секущей равен

Наклон касательной будет равен m при любом значении x, поэтому f?(x) = m. Объясняется это тем, что линия y = mx + b всегда имеет наклон m.

Обратимся к производной функции y = x?. Согласно только что сформулированному определению,

а так как h стремится к 0, f?(x) должно быть равно 2x.

При f(x) = x? получаем

а так как h стремится к 0, f?(x) должно быть равно 3x?.

Поиск производной функции f?(x) на основании функции y = f(x) называется дифференцированием. Впрочем, все не так сложно, как кажется: потренировавшись как следует и найдя производные нескольких простых функций, мы легко сможем определить их и для сложных функций. И, что самое приятное, никаких пределов! А вот и подходящая теорема.

Теорема: Если u(x) = f(x) + g(x), то u?(x) = f?(x) + g?(x). Другими словами, производная суммы есть сумма производных. Также если с –  действительное число, производная cf(x) равна cf?(x).

Как следствие, мы можем утверждать, что, поскольку y = x? имеет производную 3x?, а y = x? – производную 2x, производная y = x? + x? будет равна 3x? + 2x (например, производная функции y = 10x? – 30x?).

Отступление

Доказательство: Предположим, что u(x) = f(x) + g(x). Тогда

Положив h ? 0 в качестве предела для обеих частей этого уравнения, получим

u'(x) = f'(x) + g'(x)?

Обратите внимание, что, применяя этот предел справа, мы исходим из предположения, что предел суммы равен сумме пределов. Доказывать это мы, пожалуй, не станем – просто доверимся здравому смыслу, говорящему, что при приближении значений a и b к A и B значение a + b будет приближаться к A + B. Та же логика подсказывает нам, что предел произведения равен произведению пределов, а предел частного равен частному пределов. Но то, что справедливо для пределов, необязательно будет справедливо для производных. Например, производная произведения не равна произведению производных.

Что же касается второго утверждения нашей теоремы, то при v(x) = cf(x)

что и требовалось доказать.?

Чтобы продифференцировать функцию f(x) = x4, сначала распишем ее в следующем виде: f(x + h) = (x + h)4 = x4 + 4x?h + 6x?h? + 4xh? + h4. Коэффициенты выглядят знакомо, правда? 1, 4, 6, 4, 1… Это же числа из 4 ряда треугольника Паскаля (см. главу 4)! Следовательно,

а так как h ? 0, получается, что f?(x) = 4x?. Видите закономерность? Производные x, x?, x? и x4 равны 1, 2x, 3x? и 4x? соответственно. Применение того же алгоритма к бо?льшим степеням приводит нас к одному важному правилу. (Кстати, другое популярное обозначение производной – y?. Так и будем писать.)

Теорема (правило дифференцирования степенной функции): При n ? 0

y = xn имеет производную y? = nxn – 1

Например,

если y = x5, то y? = 5x4

а

если y = x10, то y? = 10x9

С помощью этого закона можно дифференцировать даже функции-константы, вроде y = 1, потому что 1 = x0, а y = x0 имеет производную 0x–1 = 0 при любом значении x. Это объясняется тем, что линия y = 1 является горизонтальной. Исходя из правила дифференцирования степенной функции и предыдущей теоремы, мы сможем дифференцировать любой многочлен. Например, если

y = x10 + 3x5 – x3 – 7x + 2520

то

y? = 10x9 + 15x4 – 3x2 – 7

Правило дифференцирования степенной функции верно и при отрицательных значениях n. Например, если

Аналогичным образом, если

Жаль только, что доказать это нам пока что не по силам.

Перед тем как дифференцировать более сложные функции, применим уже полученные знания в не менее интересных и полезных целях. Например, в целях оптимизации.