Из чего состоит π?

К тому, что число ? немного превышает 3, вы вполне можете прийти самостоятельно – для этого достаточно просто аккуратно все подсчитать. Но сначала нужно найти ответы на парочку вопросов. Во-первых, можно ли доказать соседство ? и 3, не проводя специальных измерений? Во-вторых, существует ли для ? какое-нибудь более удобоваримое представление (скажем, формула или простая дробь)?

На первый вопрос можно ответить, нарисовав окружность с радиусом 1, площадь который, как нам уже известно, равна ?1? = ?. На рисунке чуть ниже этот круг вписан в квадрат с длиной сторон, равной 2. Так как площадь квадрата очевидно больше площади круга, получаем, что ? должно быть меньше 4.

С другой стороны, в круг можно вписать шестиугольник – так, чтобы все шесть его вершин были расположены на окружности, причем на равном расстоянии друг от друга. Каким будет периметр этого шестиугольника? Разобьем его на шесть треугольников, величина центрального угла каждого из которых составит 360°/6 = 60°, а две стороны будут радиусами круга с длиной, равной 1 (что говорит о том, что все эти треугольники – равнобедренные). Согласно теореме о равнобедренных треугольниках, оставшиеся два угла должны быть равны между собой, то есть величина каждого составит 120°/2 = 60° – так мы узнаем, что треугольники не просто равнобедренные, но еще и равносторонние – с длиной сторон 1. Значит, площадь шестиугольника равна 6. А так как она должна быть меньше длины окружности в 2? (потому что круг очевидно больше шестиугольника), получаем 6 < 2? и ? > 3. Так мы и приходим к желаемому

3 < ? < 4

Отступление

Можно на этом не останавливаться и попытаться еще сильнее сократить возможный разброс – для этого нам понадобятся полигоны с б?льшим количеством сторон. Так, если мы окружим единичный круг не квадратом, а шестиугольником, у нас получится доказать, что ? < 2?3 = 3,46….

Еще раз: шестиугольник можно разделить на 6 равносторонних треугольников, каждый из них в свою очередь разбивается на 2 прямоугольных. Если длина меньшего катета равна x, длина гипотенузы составит 2x. По теореме Пифагора x? + 1 = (2x)?. Поиски x приводят нас к x = 1/?3. Значит, периметр шестиугольника составит 12/?3 = 4?3, а так как он должен быть больше длины окружности (2?), то ? должно быть меньше 2?3 (смотрите-ка, мы пришли к тому же заключению, что и при сравнении площади окружности с площадью шестиугольника).

Следуя той же логике чередования «вписанных» и «описывающих» полигонов, состоящих последовательно из 12, 24, 48 и 96 сторон, один из величайших древнегреческих математиков Архимед сумел доказать, что 3,14103 < ? < 3,14271, что сводится к немногим более простой формуле

Есть несколько простых дробей, которые более-менее соотносятся со значением ?. Например,

Лично мне больше всего нравится последняя. И не только потому, что она совпадает с ? в 6 из всего множества знаков после запятой, но и потому, что использует первые три нечетных числа (причем по два раза и по порядку!): две единицы, две тройки и две пятерки.

Не знаю, как у вас, но у меня руки прямо-таки чешутся найти такую простую дробь, которая полностью бы соответствовала ?, – с целыми величинами в роли как числителя, так и знаменателя (чтобы не было соблазна сжульничать и написать что-нибудь вроде

Но в 1768 году немец Иоганн Генрих Ламберт доказал, что любые подобные поиски заранее обречены на провал, потому что число ? есть величина иррациональная.

Может быть, тогда можно представить его в виде квадратов или кубов простых чисел? Ведь есть же, например, ?10 = 3,162…, что очень близко к желаемому результату. Однако в 1882 году другой немецкий математик, Фердинанд фон Линдеман, доказал, что ? есть величина не просто иррациональная, но трансцендентная – такая, которая не является корнем ни одного многочлена с целым коэффициентом (число ?2, например, будет иррациональным, но не трансцендентным, потому что представляет собой корень многочлена x? – 2).

Впрочем, представить ? в простом дробном виде все же можно. Правда, это будет не одна дробь, а сумма или произведение нескольких – вплоть до бесконечности. В главе 12, например, мы увидим, что

Формула эта настолько прекрасна, даже обворожительна, что даже не хочется верить, что ? с ее помощью вычислять придется очень и очень долго: после трехсотого элемента мы будем настолько же далеко от заветного 3,14…, насколько далеко от него банальное 22/7.

А вот еще одна недурная попытка, называемая формулой Уоллиса, – представление ? в виде бесконечного (то есть считать придется все равно очень долго, пусть и не настолько, насколько в случае с суммой) произведения: