Тригонометрия и окружность

Пока что наши знания о тригонометрических функциях ограничиваются прямоугольными треугольниками. Для решения повседневных задач этого, в принципе, более чем достаточно. Но разве вам не интересно узнать, как они ведут себя в других углах, а не только в тех, значения которых колеблются исключительно в диапазоне от 0° до 90° (ведь в прямоугольном треугольнике один из углов всегда прямой, а два оставшихся – острые)? Конечно, интересно, и именно этим мы и займемся в этом разделе – посмотрим на тригонометрические функции через призму единичного круга и разберемся в особенностях поведения синусов, косинусов и тангенсов углов других типов.

Надеюсь, вы не забыли, что единичным называется такой круг, радиус которого равен 1, а центр расположен в точке начала координат (0, 0). Для него отлично работает уравнение x? + y? = 1, которое получилось у нас в прошлой главе из теоремы Пифагора.

Давайте попробуем найти некую точку (x, y), расположенную на окружности выше и левее точки (1, 0) и образующую с центром круга и осью x острый угол A:

Для того чтобы найти x и y, нам нужно начертить прямоугольный треугольник и применить к нему наши формулы косинусов и синусов:

Другими словами, значения координат (x, y) составят (cos A, sin A). Если обобщать, то при радиусе, равном r, (x, y) = (r cos A, r sin A).

Для любого угла A нам нужно определить (cos A, sin A), то есть место расположения на окружности его вершины. При этом cos A будет соответствовать значению координаты по оси x, а sin A – по оси у, вот так:

А вот еще одно общее представление. Только теперь мы разделим единичный круг на много углов с шагом 30° (и сделаем один шаг в 45° для большей наглядности) – так мы получим углы из уже очень хорошо знакомых нам треугольников. Помните, я советовал вам выучить значения косинусов и синусов для углов 0°, 30°, 45°, 60° и 90°?

К углам этим можно прийти с помощью простого отражения значений, содержащихся в первой четверти окружности.

Прибавление или вычитание 360° на величину угла никак не повлияет (мы просто обойдем вокруг него с одной или другой стороны), а значит, для любого ?A

sin (A ± 360°) = sin A cos (A ± 360°) = cos A

Имея дело с отрицательными значениями углов, мы двигаемся по окружности слева направо: так, угол, равный –30°, ничем, по сути, не отличается от угла, равного 330°. Обратите внимание, что сдвиг на A градусов по часовой стрелке приводит нас к той же x-координате, что и сдвиг на те же A градусов против часовой стрелки. Y-координата же при этом сменит знак на противоположный. Другими словами, для любого значения угла A

cos (–A) = cos A sin (–A) = –sin A

Например,

cos (–30°) = cos 30° = ?3/2 sin (–30°) = –sin 30° = –1/2

Обратное происходит, когда мы «отзеркаливаем» ?A через ось y. Значение y-координаты получившегося таким образом дополнительного угла 180 – A остается неизменным, а значение x-координаты меняет знак на противоположный. То есть

cos (180 – A) = –cos A sin (180 – A) = sin A

Скажем, при A = 30°

cos 150° = –cos 30° = –?3/2 sin 150° = sin 30° = 1/2

Остальные тригонометрические функции определяются по старой схеме (например, tan A = sin A/cos A).

Оси x и y «разрезают» поверхность окружности на четыре сектора-квадранта. Пронумеруем их римскими цифрами по часовой стрелке – I, II, III и IV, – начиная с правой верхней, то есть с диапазона углов от 0° до 90°. Квадрант II, таким образом, охватит диапазон от 90° до 180°, квадрант III – от 180° до 270°, а квадрант IV – от 270° до 360°. Обратите внимание, что в разных квадрантах разные тригонометрические функции будут вести себя по-разному: положительные значения синуса мы получим в квадрантах I и II, косинуса – в квадрантах I и IV, тангенса – в квадрантах I и III. Чтобы это запомнить, некоторые из моих учеников любят повторять «Все студенты таскают калькуляторы» (посмотрите на первые буквы в каждом слове этой «запоминалки»: «в» – «все функции» в квадранте I, «с» – «синусы» в квадранте II, «т» – «тангенсы» в квадранте III, «к» – «косинусы» в квадранте IV).

Ну и еще немного терминологии. Для определения неизвестных значений углов нужны обратные тригонометрические (циклометрические, круговые) функции. Например, обратным синусом 1/2 будет sin–1(1/2)[32]. Такого рода функция говорит нам, что мы имеем дело с неким ?A, синус которого равен 1/2. А так как мы знаем, что sin 30° = 1/2, получаем

sin–1(1/2) = 30°

Функция sin–1 (которая также называется арксинусом) всегда даст нам угол в диапазоне от –90° до 90°, но мы-то с вами знаем, что есть и другие углы с тем же значением синуса – синус 150°, например, будет также равен 1/2. То же происходит и с любым кратным 360° значением, прибавляемым к 30° или 150° – синусы будут равны.

Для треугольника с длинами сторон 3, 4 и 5 (см. рисунок) калькулятор может рассчитать ?A тремя различными способами, каждый из которых будет основан на своей обратной функции:

?A = sin1(3/5) = cos1(4/5) = tan1(3/4) ? 36,87° ? 37°

Самое время применять все эти знания на деле. В «геометрической» главе мы доказали теорему Пифагора, с помощью которой можно вычислить длину гипотенузы прямоугольного треугольника, зная длины его катетов. Здесь же, в главе «тригонометрической», мы можем сделать практически то же самое для любого треугольника. В этом нам поможет закон косинусов.

Теорема (закон косинусов): Длина стороны c любого треугольника ABC, в котором стороны a и b образуют ?C, соответствует

c? = a? + b? – 2ab cos C.

Для примера взгляните на изображенный ниже треугольник ABC. Между двумя его сторонами с длинами 21 и 26 лежит угол 15°. Согласно закону косинусов, длина третьей стороны с составит

c? = 21? + 26? – 2(21)(26) cos 15°

А так как cos 15° ? 0,9659, уравнение упрощается сначала до c? = 62,21, а потом и до c ? 7,89.

Отступление

Доказательство: Чтобы доказать эту теорему, рассмотрим три частных случая – в зависимости от того, будет ли ?C прямым, острым или тупым. Если ?C – прямой, его косинус будет равен cos 90° = 0, что упрощает закон косинусов до c? = a? + b?, то есть до уже доказанной нами теоремы Пифагора.

Если ?C – острый (как на рисунке), опустим перпендикуляр из ?B к стороне AC до лежащей на ней точки D. Получим два треугольника. Применим теорему Пифагора к CBD – a? = h? + x? и придем к

h? = a? – x?

Треугольник же ABD можно просчитать как c? = h? + (b – x)? = h? + b? – 2bx + x?, то есть

h? = c? – b? + 2bx – x?

Составим из двух равных h? частей уравнение:

c? – b? + 2bx – x? = a? – x?

Следовательно,

c? = a? + b? – 2bx

В треугольнике CBD cos C = x/a, поэтому x = a cos C. Следовательно, если ?C является острым, то

c? = a? + b? – 2ab cos C

Если же ?C – тупой, дополним треугольник ABC прямоугольным треугольником CBD, как на рисунке:

Для него, как и для получившегося большого, верна теорема Пифагора: a? = h? + x? и c? = h? + (b + x)?. Как и в случае с острым ?C, соединим уравнения:

c? = a? + b? + 2bx

В треугольнике CBD cos (180° – C) = x/a, то есть x = a cos (180° – C) = –a cos C. И мы вновь приходим к искомому:

c? = a? + b? – 2ab cos C?

Кроме того с помощью функций можно рассчитать площадь треугольника.

Сопутствующая теорема: В любом треугольнике ABC со сторонами a и b и лежащим между ними ?C

Отступление

Доказательство: Площадь треугольника с длиной основания b и высотой h равна

Все три треугольника, рассмотренные при доказательстве закона косинусов, имеют основание b. Определим высоту h. В остроугольном треугольнике обратим внимание на то, что sin C = h/a, то есть h = a sin C. В тупоугольном треугольнике sin (180° – C) = h/a, поэтому опять имеем h = a sin (180° – C) = a sin C. В прямоугольном же треугольнике h = a, что равно a sin C, потому что C = 90°, а sin 90° = 1. Следовательно, так как во всех трех случаях h = a sin C, площадь треугольников составит
что и требовалось доказать.

Следствия этой теоремы очевидны:

Другими словами, в треугольнике ABC (sin C)/c равен его удвоенной площади, разделенной на произведение длин трех его сторон. Какой угол выбрать, по большому счету не так уж и важно – (sin B)/b или (sin A)/a дадут нам тот же результат. И это доказывает одну очень полезную теорему.

Теорема (закон синусов): В любом треугольнике ABC, длины сторон которого соответственно равны a, b и c,

Закон синусов – это еще один способ вычислить высоту нашей горы. На этот раз мы сосредоточимся на a – диагонали, пролегающей между нами и вершиной:

Способ № 5 (закон синусов): В треугольнике ABD ?BAD = 32°, а ?BDA = 180° – 40° = 140°. Следовательно, ?ABD = 8°. Согласно закону синусов получаем

Умножим обе части на sin 32°, что даст нам a = 300 sin 32°/ sin 8° ? 1143 метров. А так как sin 40 ? 0,6428 = h/a, то

h = a sin 40 ? (1143)(0,6428) = 735

что полностью совпадает с ответом, к которому мы пришли в прошлом разделе.

Отступление

Не менее замечательна в этом отношении формула Герона, с помощью которой можно найти площадь треугольника по длинам его сторон a, b и c. Сначала мы находим полупериметр p:

А потом и площадь S:

S = ?p(p – a)(p – b)(p – c)

Например, если взять треугольник со сторонами 3, 14 и 15 (узнаете первые пять цифр числа ??), полупериметр будет равен (3 + 14 + 15)/2 = 16, а площадь, таким образом, – ?(16(16 – 3)(16 – 14)(16 – 15)) = ?416 ? 20,4.

Несложно, правда? Уверен, внимательный читатель не сможет не заметить здесь закон косинусов, слегка приправленный алгеброй.