Периметры и площади

Периметр полигона есть сумма длин его сторон. Так, периметр прямоугольника длиной b и шириной h будет равен 2b + 2h, потому что и b, и h суть размеры каждой из двух его сторон. А как насчет площади? Исходим из того соображения, что площадь квадрата размером 1 на 1 (так называемого единичного квадрата) равна 1. При положительных целых значениях b и h (как на рисунке) мы можем разбить всю площадь на bh единичных квадратов, а значит, она будет равна bh. В целом же, любой прямоугольник с длиной b и шириной h (где b и h суть положительные, но необязательно целые величины) имеет площадь bh.

Отступление

В этой главе мы уже не раз обращались к помощи алгебры, чтобы разрешить исключительно геометрические проблемы. Принцип этот прекрасно работает и в обратную сторону: порой геометрия значительно облегчает понимание алгебры. Взгляните на типичную задачу. Насколько малым может быть значение

где x есть любое положительное число? При x = 1 имеем 2, при x = 1,25 – 1,25 + 0,8 = 2,05, при x = 2 – 2,5. Логика подсказывает, что наименьшим ответом будет 2, и это на самом деле так, только вот как нам в этом удостовериться? Самый простой и эффективный метод расчета будет предложен в главе 11, пока же давайте ограничимся методом геометрическим.

Возьмем фигуру, состоящую из четырех костяшек домино, каждая из которых имеет размер x на 1/x. Расположены они так, чтобы в пространстве между ними получился квадрат. Какова будет общая площадь всей фигуры (включая этот внутренний квадрат)?

С одной стороны, поскольку фигура представляет собой квадрат x + 1/x на x + 1/x, ее площадь должна быть (x + 1/x)?. С другой стороны, площадь каждой костяшки домино равна 1, поэтому площадь фигуры в целом составит как минимум 4. Следовательно,

(x + 1/x)? ? 4

или x + 1/x ? 2, что и требовалось доказать.?

Начав с площади прямоугольника, можно найти площадь практически любой другой геометрической фигуры, в первую очередь – треугольника.

Теорема: Площадь треугольника с длиной основания b и высотой h составляет

Для наглядности возьмем три конкретных треугольника, основание каждого из которых рана b, а высота – h, что значит, что их площадь также должна быть равна. Это, по сути, наш третий вопрос, ответ на который, готов поспорить, многих из вас удивил.

В зависимости от того, какие размеры имеют прилежащие к основанию AC углы ?A и ?C, нам нужно рассмотреть три разных частных случая, а затем создать копию треугольника ABC и вписать его вместе с оригиналом в прямоугольник с площадью bh, как показано на рисунке. Треугольник ABC займет ровно половину этой площади, а значит, его площадь составит

как мы и предполагали.

Если углы ?A и ?C острые, остроумным будет и доказательство. Из точки B проведите линию длиной h так, чтобы она была перпендикулярна отрезку AC (она называется высотой треугольника ABC), пересекая его в точке X, как показано на рисунке:

AC, таким образом, состоит из отрезков AX и XC, длины которых составляют соответственно b1 и b2, где b1 + b2 = b. А так как треугольники BXA и BXC получились у нас прямоугольными, то, согласно предыдущему примеру, их площади будут равны

соответственно. Следовательно, площадь большого треугольника ABC –

что и требовалось доказать.

В случае же, если ?A или ?C является тупым, чертеж будет выглядеть вот так:

В примере с остроугольным треугольником мы представляли ABC как сумму двух прямоугольных треугольников. Здесь же нам нужна их разность. Высота любом тупоугольном треугольнике выходит за его границы, образуя тем самым большой треугольник. В нашем случае это ABY, длина основания которого равна b + c, а площадь –

Маленький же прямоугольный треугольник CBY имеет площадь
Следовательно, площадь ABC может быть представлена как

что и требовалось доказать.