Загадка тридцати семи

We use cookies. Read the Privacy and Cookie Policy

С некоторыми подсказками и наводящими вопросами Сомса я через некоторое время понял, что ключом к этой загадке является уравнение 111 = 3 ? 37. Оказалось, что трехзначные числа, которые после моей процедуры дают длинный ряд одинаковых цифр, кратны 3. К примеру, именно так обстоит дело для чисел 123, 234, 345, 456 и 126. Для таких чисел моя процедура эквивалентна умножению меньшего числа, равного трети от исходного, на 3 ? 37, то есть на 111.

В качестве примера рассмотрим предложенное Сомсом число 486. Это 3 ? 162. Поэтому умножить 486486486486486486 на 37 – это то же самое, что умножить 162162162162162162 на 111. Поскольку 111 = 100 + 10 + 1, это можно сделать путем сложения чисел

16216216216216216200

1621621621621621620

162162162162162162

Начиная справа налево, получаем 0 + 0 + 2 = 2, затем 0 + 2 + 6 = 8. После этого получаем 2 + 6 + 1, 6 + 1 + 2, 1 + 2 + 6 снова и снова, пока не доберемся до левого конца. Складывая одни и те же три числа в разном порядке, получаем в каждом случае, естественно, один и тот же результат – а именно 9.

Когда Сомс в первый раз объяснил мне все это, у меня нашлось возражение.

– Да, но что если при сложении этих трех чисел получается больше 9? Возникнет перенос в следующий разряд!

Он ответил кратко и по существу.

– Ну да, Ватсап, каждый раз один и тот же перенос.

В конце концов я понял, что это означало все то же самое – многократное повторение одной и той же цифры.

– Существуют, конечно, и более формальные доказательства, – заметил Сомс, – но мне кажется, этот пример вполне проясняет общую идею.

После этого он вернулся в кресло с кипой газет и весь остальной вечер молчал, а я спустился вниз, чтобы выпросить у миссис Сопсвудс тарелку сэндвичей с горгонзолой.

[На написание этой главы меня вдохновили кое-какие наблюдения Стивена Гледхилла.]

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ