Глава 4 Алгебраические браки

We use cookies. Read the Privacy and Cookie Policy

Глава 4 Алгебраические браки

Чаще всего основная трудность для математика, столкнувшегося с прикладной задачей, — понять, о чем идет речь, м перевести исходные данные на собственный язык.

Андре Вейль, из комментариев к полному собранию сочинений

ЛЕВИ-СТРОСС: Теперь, когда вы объяснили мне основы теории групп, посмотрим, как ее можно применить при изучении структур родства. С чего начнем?

ВЕЙЛЬ: Мы начнем с очень простой модели и на ее примере постепенно покажем все принципы, необходимые для решения более общих задач. Допустим, что племя, которое мы изучаем, состоит из четырех кланов, которые, к примеру, могут поклоняться разным богам или контролировать разные территории. Так как структура брака не зависит от названий кланов, обозначим их буквами: А, В, С и D.

ЛЕВИ-СТРОСС: Вам будет интересно узнать, что когда я поселился среди индейцев намбиквара, они сразу же объяснили, что использовать собственные имена запрещено. Поэтому моим первым шагом при анализе структур родства стало обозначение членов племени различными символами во время переписи. Кроме того, я обозначал кланы буквами, а их отдельных членов — числами. В результате получилась статья, которую, можно сказать, бросало то в жар, то в холод: с холодными обозначениями вида А7 соседствовали комментарии «пышная женщина, всегда в хорошем настроении» или «тщеславный, самодовольный и не слишком умный человек».

ВЕЙЛЬ: Намбиквара... вот прекрасный пример общества, подготовленного для математиков! При решении некоторых задач сложнее всего правильно выбрать обозначения и перевести их на удобный нам язык. В нашем случае после того, как мы выделили четыре клана племени, нужно рассмотреть допустимые браки, которые мы обозначим M1, M2, М3... Обратите внимание, что для описания брака достаточно указать, к какому клану принадлежат мужчина и женщина.

65

К примеру, это могут быть мужчина А и женщина В.

ЛЕВИ-СТРОСС: Теперь нужно установить некоторые ограничения. Во-первых, все члены племени, как мужчины, так и женщины, должны иметь право вступать в брак. Это означает, что для любых мужчины и женщины из любого клана должно существовать как минимум одно правило М, которому они соответствуют.

Пока что все звучит вполне логично. Следующая гипотеза поможет сузить проблему, совершенно необъятную во всей своей полноте. Эта гипотеза связана, как вам известно, с названием моей диссертации: «Элементарные структуры родства».

Я называю элементарными племена, в которых каждому члену соответствует единственная допустимая разновидность брака, и процесс выбора супруга (супруги) происходит автоматически. Другой предельный случай — общества, подобные нашему, которые можно назвать сложными, где каждый брак заключается с учетом бесчисленного множества психологических, социальных, экономических и других факторов.

Следует отметить, что не существует ни полностью элементарных обществ, так как внутри клана всегда допускается некоторая свобода в выборе партнера, ни абсолютно сложных, так как всегда будут существовать те или иные запреты, к примеру, недопустимость инцеста. Но на теоретическом уровне такое различие вполне применимо. При изучении элементарных структур я хотел рассмотреть сложные общества, начав с племен североамериканских индейцев кроу и омаха, которые могли делиться на десятки кланов. Их нормы определяли лишь то, с кем не мог вступать в брак тот или иной человек. Это исследование стало бы логичным продолжением диссертации, но на моем пути встали «Печальные тропики», и я никогда не нашел в себе сил рассмотреть эту в высшей степени сложную задачу с точки зрения математики, так как для этого пришлось бы прибегнуть к помощи компьютеров. С ростом числа кланов число возможных вариантов брака начинает напоминать число ходов в шахматной партии: оно является конечным, но таким большим, что на практике его можно считать бесконечным. Для изучения элементарных структур мне пришлось прочесть около семи тысяч статей, но если бы я не обратился за помощью к вам, то кто знает, смог ли бы я понять более сложные модели.

ВЕЙЛЬ: Не беспокойтесь: мы ограничимся изучением элементарных структур, а прочее оставим молодым исследователям. Если вы не возражаете, я, прежде чем продолжить, напомню, что элементарные структуры удовлетворяют следующим условиям.

66

Условие 1: Все члены племени могут вступать в брак, и каждому из них соответствует единственная разновидность брака.

Обратите внимание, что в подобном обществе число возможных браков в точности равно числу кланов племени. Следовательно, в нашем примере нужно описать M1, M2, M3 и M4.

Так как все мужчины должны иметь возможность вступать в брак, необходимо как минимум четыре правила, по одному для каждого клана. Допустим, что существует еще одно, пятое правило. Оно должно относиться к мужчине определенного клана. Так как кланов всего четыре, это правило обязательно будет описывать один из уже упомянутых кланов, но в таком случае разновидность брака не будет единственной! Мы доказали, что число разновидностей брака должно в точности равняться числу кланов. Однако наши четыре правила не могут быть произвольными: в М1, М2, М3 и M4 должны учитываться не только все мужчины, но и все женщины. Приведем пример правил, для которых выполняется это условие:

(M1) мужчина А и женщина В

(M2) мужчина В и женщина С

(M3) мужчина С и женщина D

(M4) мужчина D и женщина А

ЛЕВИ-СТРОСС: Этнологи называют такую разновидность брака обобщенным обменом, поскольку никакие два клана не обмениваются женщинами: так, мужчины А вступают в брак с женщинами В, а женщины А — с мужчинами D. Теперь, когда мы описали разновидности брака, необходимо объяснить, как они распространяются на представителей следующего поколения. Вновь будем использовать упрощенное условие.

Условие 2: Разновидность брака для каждого человека зависит только от его пола и от разновидности брака его родителей.

ВЕЙЛЬ: Это означает, что существует две функции f и g, которые ставят в соответствие каждой разновидности брака Мi правила f(Мi) и g(Mi), описывающие

67

браки сыновей и дочерей, рожденных в этом браке. Следовательно, изучение структур родства сводится к определению разновидностей брака Мi и функций f и g. Вернемся к предыдущему примеру и предположим, что дети матерей из кланов A, B, С и D принадлежат кланам В, С, D и А соответственно. Посмотрим, как можно определить функции f и g. Разновидность брака М1 описывает брак между мужчиной А и женщиной В. Клан потомков определяется по матери, следовательно, дети от брака М1 будут принадлежать клану С. Так как мужчина из клана С вступает в брак по правилу М3 имеем f(M1) = М3 a g(M1) = M2 поскольку женщины из клана С подчиняются второму правилу. Повторив рассуждения для остальных разновидностей брака, получим следующую таблицу.

Обратите внимание, что функции f и g описывают перестановку разновидностей брака так, что все возможные разновидности оказываются применимы для потомков обоих полов ровно один раз. В противном случае одна из разновидностей брака в следующем поколении исчезла бы, и было бы нарушено первое условие. Помните, что я рассказывал вам о симметрической группе Sn, господин Леви-Стросс? Функции f и g — это перестановки элементов М1, M2, M3 и M4. Сочетая их несколько раз, мы можем достичь любой, даже самой дальней ветви генеалогического древа!

Независимо от сложности правил, описывающих допустимые браки, мы всегда сможем описать их на языке алгебры — достаточно лишь запастись терпением.

ЛЕВИ-СТРОСС: Посмотрим, господин Вейль. Попробуйте доказать, что женщины принадлежат к тому же клану, что и их бабушки по отцовской линии.

ВЕЙЛЬ: Я думал, вы предложите мне задачу посложнее! Допустим, что бабушка и дедушка вступили в брак по правилу Mi. Тогда их сыновья должны последовать правилу f(Mi), а женщины, рожденные в этом брачном союзе, вступят в брак по правилу g(f(Mi)). Следовательно, чтобы определить разновидность брака внучки, сначала нужно применить функцию f, затем — функцию g. Теперь ваш вопрос звучит так: совпадают ли g(f(Mi)) и Mi?

Иными словами, является ли композиция f и g тождественным преобразованием? Чтобы показать, что это не так, достаточно произвести несложные расчеты: поскольку f(M1) равно М3 a g(M3) равно M4, получим, что g(f(M1)) = M4, а не М1 как мы хотели. Следовательно, если бабушка

68

принадлежит клану В, то внучка принадлежит к клану А. Однако бабушка по отцовской линии и ее внучка действительно будут принадлежать к одному клану. Убедитесь в этом!

ЛЕВИ-СТРОСС: Господин Вейль, я впечатлен! Именно такие методы требовались мне в 40-е годы при изучении запрета инцеста — проблемы, над которой до меня работал социолог Эмиль Дюркгейм. Он одним из первых указал, что запрет инцестов есть проявление более общего феномена, распространенного практически повсеместно — экзогамии. Как только мне что-то запрещают в кругу близких родственников, я вынужден покинуть клан, чтобы преодолеть запрет. Таким образом, речь идет не о моральных, а о практических соображениях. Многие опрошенные объясняли, что если женятся на своей сестре, то у них не будет зятя. «С кем я тогда буду ходить на охоту? С кем я буду отдыхать?» — говорили они. Моя точка зрения в некотором роде отличалась от той, которой придерживался Дюркгейм. Мне было интересно понять переход от природы, описываемой всеобщими законами, к культуре, где законы в разных обществах отличались. Вскоре я понял, что запрет инцеста представляет собой некое промежуточное состояние, потерянное звено цепи. Очевидно, что это правило применяется по-разному: в некоторых обществах, чрезвычайно строгих в этом отношении, смертью караются связи, которые мы бы никогда не назвали инцестом. В таком обществе я сам был бы рожден в запретном браке, так как мои родители были пятиюродными братом и сестрой. Другие общества, напротив, настолько либеральны, что в них мужчина может жениться на младшей сестре, хотя вступать в брак со старшей сестрой запрещается. Неизменно одно: всегда существует правило, запрещающее вступать в брак с кем угодно. Согласно моей гипотезе, запрет инцеста есть признак перехода от природы к культуре: в разных обществах это правило отличается, но в то же время оно весьма схоже со всеобщими законами природы.

ВЕЙЛЬ: Если я правильно помню, брак между родными братом и сестрой всегда был запрещен, но в некоторых племенах, которые вы изучали, мужчина мог вступать в брак с дочерью брата своей матери. Посмотрим, как можно записать это правило с помощью перестановок f и g. Не будем сразу же рассматривать мужчину, вступающего в брак, и вернемся на два поколения назад. Рассмотрим брак, заключенный по одному из правил Mi. Дочь, рожденная в этом браке, должна будет последовать правилу g(Mi), сын — f(Мi).

Это и будут мать и ее брат, о которых говорится в условии задачи. Следовательно, мужчина вступит в брак по правилу f(g(Mi)), а дочь брата его матери — по правилу g(f(Mi)). Чтобы оба они могли пожениться, эти правила должны совпадать: f(g(Mi)) = g(f(Mi)). Иными словами,

69

вне зависимости от исходного правила, если мы применим сначала функцию g, а затем — функцию f, то результат будет таким же, как если мы применим сначала функцию f, затем — функцию g. Как я уже объяснял в нашей последней беседе, композиция f и g является коммутативной. Это означает, что подгруппа Sn, которую порождают эти функции (то есть множество элементов, получаемых последовательным применением f и g), является абелевой. Абелевы группы с двумя порождающими элементами очень просты. Сейчас я объясню, почему это так, но вначале потребуется ввести одно новое понятие.

В прошлый раз я привел несколько примеров групп: мы подробно рассмотрели симметрическую группу Sy которая представляла собой группу преобразований, оставляющих равносторонний треугольник инвариантным, а также группу перестановок множества из трех элементов. Мы также поговорили о циклических группах ?/n — их элементами являются натуральные числа, меньшие n, а групповой операцией — та же видоизмененная операция сложения, которую мы выполняем, когда смотрим на циферблат часов, разделенный на n делений.

Тогда вы могли бы спросить меня: как определять новые группы на основе известных примеров? Сейчас я опишу один из возможных способов. Допустим, что даны две группы, G и Н. Так как соответствующие групповые операции необязательно совпадают, обозначим групповую операцию первой группы знаком *, групповую операцию второй группы — знаком ·. Множество, на котором будет определена новая группа (обозначим ее G ? H), будет образовано парами (g, h), где g — элемент G, h — элемент Н:

G ? H = {(g,h): g ? G, h ? Н}.

Осталось определить групповую операцию. Для этого применим групповые операции G и Н к соответствующим элементам пар. Следовательно, результат операции над (g1, h1) и (g2, h2) будет равен (g1 * g2, h1 · h2). Нетрудно видеть, что эта операция удовлетворяет трем условиям определения группы. Доказательство я оставлю вам в качестве упражнения. Мы получили новую группу, которую будем называть прямым произведением G и Н.

Вычислим в качестве примера прямое произведение циклической группы второго порядка на саму себя. Как известно, элементы ?/2 равны [0] и [1], а операции над ними выполняются по следующим правилам:

[0] + [0] = [0], [0] + [1] = [1],[1] + [0] = [1] и [1] + [1] = [0].

Так, прямое произведение ?/2 х ?/2 будет образовано следующими парами:

([0], [0]), ([0], [1]), ([1], [0]) и ([1], [1]).

Первая из этих пар — нейтральный элемент. Обозначим ее через е. Если мы обозначим остальные пары через а = ([0], [1]), b = ([1], [0]) и с = ([1], [1]), то таблица группы примет вид

70

Это группа Клейна, названная в честь немецкого математика Феликса Клейна (1849—1925), который впервые описал ее в 1884 году в своих «Лекциях об икосаэдре и решении уравнений пятой степени» при изучении преобразований плоскости, оставляющих ромб инвариантным. Обратите внимание, что она содержит всего четыре элемента, а группа треугольника — шесть. Это логично, поскольку группы в некотором смысле характеризуют симметрию, а ромб менее симметричен, чем треугольник!

Гэуппа преобразований, оставляющих ромб неизменным.

Порядок всех элементов группы Клейна равен двум, поэтому на диагонали таблицы умножения записаны только нейтральные элементы. Между прочим, можно доказать, что единственные группы четвертого порядка — это циклическая группа ?/4 и группа Клейна.

Они отличаются между собой тем, что одна из них содержит элементы четвертого порядка, другая — нет.

ЛЕВИ-СТРОСС: Я понимаю, о чем вы говорите, господин Вейль, но складывается впечатление, что мы отошли от темы: какое отношение все это имеет к браку?

71

ВЕЙЛЬ: Наберитесь терпения! Я уже говорил, что в обществе, которое удовлетворяет двум нашим условиям, описание структуры родства сводится к описанию разновидностей брака Mi и функций f и g. Введем третье условие, которое описывает запреты инцеста и, по всей видимости, выполняется в некоторых племенах, о которых вы писали в «Элементарных структурах родства»:

Условие 3: Допускается брак между любым мужчиной и дочерью брата его матери.

Это условие означает коммутативность композиции f и g. Следовательно, чтобы изучить все возможные модели обществ, которые удовлетворяют нашим трем условиям, нам нужно как-то классифицировать абелевы подгруппы симметрической группы, порожденные двумя элементами. Посмотрим, как выглядят эти подгруппы:

Обозначим через Н группу, порожденную f и g. Первый возможный случай таков: один из двух элементов можно получить, возведя другой в определенную степень. В этом случае включать такой элемент в число порождающих элементов группы Н не требуется: его можно получить из другого элемента. Таким образом, имеем подгруппу, порожденную единственным элементом, то есть циклическую группу.

Предположим, что это не так, то есть f и g не зависят друг от друга. По определению, элементами Н будут все возможные цепочки операций над f и g, к примеру:

f * g * g * f * g

Порядок следования элементов будет произвольным, но так как мы предположили, что композиция f и g коммутативна, мы можем воспользоваться свойством ассоциативности, применить равенство f*g = g*f и попарно объединить элементы так, что все f и все g будут расположены рядом. Пример:

f*g*g*f*g=f*g*(g*f)*g=f*g*(f*g)*g=f*(g*f)*g*g=f*(f*g)*g*g=f2*g3

Так как этот метод корректен для любого элемента H, мы доказали, что любой элемент Н можно записать в виде fn * gm, где n и m — неотрицательные целые натуральные числа (они могут равняться нулю). Как правило, из соображений удобства указывают, что и fn, и gm — нейтральные элементы. Таким образом, когда верхний индекс одного члена обнуляется, результат операции равен степени другого члена.

Вместо fn * gm мы могли бы записать (fn, gm), при этом в структуре Н не произошло бы каких-то существенных изменений. Эта операция очень похожа на произведение двух циклических групп, однако члены fn * gm могут повторяться, даже если

72

порядок f и g будет больше, чем n и m соответственно. Чтобы показать, что Н — это произведение двух циклических групп[6], нужно выполнить еще несколько действий:

Предложение 1. Конечная абелева группа, порожденная двумя элементами, является либо циклической, либо прямым произведением двух циклических групп.

Это предложение — частный случай теоремы о структуре конечнопорожденных абелевых групп, по которой такие группы изоморфны прямому произведению

? ? ... ? ? ? ?/n1 ? ... ? ?/nk

где ? — группа целых чисел, a ?/n1 ..., ?/nk — циклические группы. Число копий ?, приведенных в произведении, называется рангом группы и отлично от нуля тогда и только тогда, когда группа является бесконечной.

ЛЕВИ-СТРОСС: Теперь рассмотрим наш пример. В нотации, которую вы объяснили в прошлый раз, перестановки f и g записываются так:

Переставим их двумя возможными способами:

Как видите, их композиция коммутативна, следовательно, в нашей структуре с обобщенным обменом любой мужчина может жениться на дочери брата своей матери.

ВЕЙЛЬ: Так как подгруппа S4, порожденная f и g, является абелевой, она будет либо циклической, либо прямым произведением двух циклических групп. В этом случае расчет

73

показывает, что перестановка f определяется как сочетание g с самой собой (/ =

= g2). Следовательно, мы имеем дело с первой из возможных ситуаций. Быть может, так будет всегда? Вовсе нет: составим пример, в котором подгруппа, порожденная f и g, будет прямым произведением двух циклических групп. Предположим, что допустимы следующие разновидности брака:

(Mt) мужчина А и женщина D

(M2) мужчина В и женщина С

(M3) мужчина С и женщина В

(M4) мужчина D и женщина А

В этом случае кланы А и D, равно как и В и С, обменялись женщинами, следовательно, мы имеем дело с ограниченным обменом. Предположим, что дети матерей из кланов А, В, С и D принадлежат к кланам В, A, D и С соответственно. Мы можем определить функции f и g прежним образом:

Обратите внимание, что f — та же перестановка, что и в предыдущем примере, а перестановка g изменилась. Но и в этом случае их композиция коммутативна: 11

Отличие от предыдущего примера заключается в том, что теперь и f, и g являются элементами второго порядка (убедитесь в этом), следовательно, ни один из них не может быть степенью другого. Следовательно, подгруппа, порожденная f и g, будет произведением двух циклических групп. Более того, это будет группа Клейна!

ЛЕВИ-СТРОСС: Еще один вопрос, который интересует нас, этнологов, при изучении браков, звучит так: можно ли найти группы людей, которые не связаны

74

отношениями родства между собой? Общество, в котором можно выделить такие группы, называется сократимым. Допустим, что в элементарном племени, состоящем из четырех кланов, ограниченный обмен проводится по следующим правилам:

(Mt) мужчина А и женщина В

(M2) мужчина В и женщина А

(M3) мужчина С и женщина D

(M4) мужчина D и женщина С

Дети принадлежат к тем же кланам, что и их матери. Функции f и g вычисляются как и обычно, однако будет не лишним напомнить, как именно это делается. В браке М1 жена принадлежит к клану В, следовательно, к этому же клану будут принадлежать и ее дети. Мужчина из клана В вступает в брак по правилу M2, поэтому f(M1) = M2 a g(M1) = M1 так как женщины из клана В подчиняются первому правилу. Получим таблицу

Очевидно, что кланы А и В никогда не породнятся с кланами С и D. Следовательно, рассматриваемое общество является сократимым. В противном случае общество называется несократимым.

ВЕЙЛЬ: Обратите внимание, господин Леви-Стросс, что достаточно рассмотреть несократимые общества, поскольку любое племя можно разделить на несколько несократимых сообществ. Это лишь одно из множества проявлений общего принципа, используемого в самых разных областях математики: если какой-либо объект можно разделить на несколько простых, при этом правила разделения известны, то для анализа всех возможных объектов достаточно изучить эти простые объекты. Представим несократимые общества на языке теории групп. Общество является несократимым тогда и только тогда, когда две любые разновидности брака связаны между собой перестановками f и g, то есть если одну из них можно получить из другой посредством этих перестановок. Не будем забывать, что f и g позволяют восстановить все генеалогическое древо! Очевидно, что это свойство в вашем примере не выполняется: применив f и g к М1 мы можем получить только М1 и М2

Тем не менее два первых общества являются несократимыми. Напомним таблицу, которую мы привели в самом начале:

75

Докажем, что на основе брака Мх можно получить все остальные. В самом деле, применив f и g, получим M3 и M2 соответственно. Если же мы применим сначала f, а затем g, то получим M4 в силу равенства g(f(M1)) = g(M3) = M4. Осталось показать, как можно получить М1. Один из возможных вариантов — дважды применить f, так как f2(M1) = f(M3) = М1. Вот и все! Следовательно, рассматриваемое общество является несократимым.

ЛЕВИ-СТРОСС: Постойте, разве не нужно доказать это же утверждение, взяв за основу M2, М3 и M4 вместо М1?

ВЕЙЛЬ: На самом деле этого не требуется, и сейчас я объясню, почему. Мы знаем, что из Мх можно вывести все возможные разновидности брака. Допустим, что мы хотим вывести все разновидности брака из какого-либо другого Mi. Обозначим через h элемент подгруппы, порожденной f и g, который позволяет перейти от М1 к Mi, то есть такой элемент, для которого выполняется условие h(M1) = Mi.

Так как h принадлежит группе, для него определен обратный элемент h-1. Припишем h-1 с двух сторон равенства и получим h-1(h(M1)) = h-1(Mi). Композицией h и h-1 является тождественное преобразование — вспомните определение обратного элемента! Таким образом, Мх = h-1(Mi). Это означает, что мы можем получить М1 из Mi. Так как правило M1 связано со всеми остальными разновидностями брака, с ними будет связано и любое другое Mi. Подгруппы Sn, обладающие этим свойством, называются транзитивными. Имеем:

Племя, состоящее из n кланов, является несократимым тогда и только тогда, когда подгруппа Sn , порожденная перестановками f и g, является транзитивной.

Объединив это утверждение с предложением 1, получим, что для изучения несократимых обществ, удовлетворяющих трем нашим условиям, необходимо знать: а) какие циклические подгруппы Sn транзитивны и б) какие прямые произведения двух циклических подгрупп Sn транзитивны. Нетрудно видеть, что подгруппа Н

76

группы Sn может быть транзитивной только тогда, когда она содержит по меньшей мере n элементов. Допустим, что эта подгруппа содержит m элементов, где m < n.

Обозначим их через h1, h2... hm. С M1 будут связаны следующие разновидности брака: h1(M1), h2(M2) ... hm(Mm). В лучшем случае все они будут различны, однако этот перечень никогда не будет полным, так как он содержит m элементов, а m меньше n. Применив некоторые другие свойства симметрической группы, найти циклические транзитивные подгруппы Sn несложно, однако давайте остановимся на этом — иначе мы никогда не закончим наш разговор о браках!