Игры и математика в Античности
Уже в двух великих цивилизациях древности, вавилонской и египетской, где математика носила исключительно практический характер, встречаются настольные игры и занимательные задачи. Первые упоминания о настольных играх, дошедшие до наших дней, относятся к египетской игре сенет и к настольной игре урских царей Вавилонии. С другой стороны, в одной из древнейших рукописей о математике — папирусе Ахмеса, который датируется примерно 1650 годом до н. э., наряду с практическими задачами о делении или вычислении среднего встречаются математические задачи без контекста, которые можно назвать занимательными. Этот древнеегипетский задачник, найденный в гробнице Рамзеса II примерно в 1850 году и приобретенный Александром Генри Риндом в 1856 году в Луксоре, в настоящее время хранится в Британском музее в Лондоне.
Супруга Рамзеса II царица Нефертари за игрой в сенет. Этот рисунок находится на стене передней залы ее гробницы.
Например, задача 24 папируса Ахмеса гласит: «Целое и седьмая его часть дают 19», что на современном языке выглядит так: «Найдите такое число, которое при сложении с одной седьмой его частью дает 19». Эта задача решается элементарно с помощью уравнения первой степени, но подобный прием, очевидно, был неизвестен древним египтянам. В папирусе Ахмеса приводится интересный способ ее решения, называемый методом ложного положения, который использовался древними во многих арифметических задачах. В этой задаче он применяется следующим образом. Ахмес предполагает, что решением является 7, и выполняет следующие действия: 7+ 7·1/7 = 8. Результат не равен 19, следовательно, нужно найти число, которое при умножении на 8 дает 19. Иными словами, нужно поделить 19 на 8. Эту операцию древние египтяне выполняли так:
(8 ?) 2 = 16,
(8 ?) 1/4 = 2,
(8 ?) 1/8 = 1.
Откуда следует: 19 : 8 = 2 + 1/4 + 1/8.
Следовательно, 7 нужно умножить на (2 + 1/4 + 1/8). Имеем: 14 + (1 + 1/2 + 1/4) + (1/2 + 1/4 + 1/8) = 16 + 1/2 + 1/8, что в современной записи выглядит как 16 + 5/8, или 16,625.
ТЫСЯЧЕЛЕТНЯЯ ИГРА СЕНЕГ
Одна из древнейших известных нам настольных игр называется сенет. В древнеегипетских гробницах найдены многочисленные рисунки и мозаики, где изображены игроки в сенет. Несмотря на это, ее точные правила неизвестны, хотя в 1978 году Тимоти Кендалл воссоздал игру на основе имеющихся источников. Он отмечает, что сенет играл важную роль в похоронных обрядах: усопший должен был сыграть партию с судьбой в присутствии бога Осириса. В «Книге мертвых» говорится, что от результата этой партии зависела дальнейшая загробная жизнь. Задача этой игры, рассчитанной на двух игроков, — первым довести до конца доски семь фишек. Вместо игральных костей используются четыре палочки, плоские с одной стороны и выпуклые с другой. Броском палочек можно получить одно из пяти возможных значений — по числу палочек, упавших плоской стороной вверх.
Доска для игры в сенет. Изображено начальное положение игры. Слева — четыре палочки, которые использовались вместо игральных костей.
Читатель отметит своеобразный способ выполнения операций, а также использование дробей.
Для деления Ахмес находит три степени числа 2, которые в сумме дают 19. Это 16, 2 и 1. Затем он находит восьмую часть для каждого из этих чисел (получив 2, 1/4, 1/8) и выполняет сложение.
НАСТОЛЬНАЯ ИГРАУРСКИХ ЦАРЕЙ. ИСТОРИЯ ДЛИНОЙ В 4 000 ЛЕТ
Наряду с египетской игрой сенет, это одна из древнейших известных нам игр. Украшенная драгоценностями доска для этой игры, найденная в шумерском городе Ур британским археологом сэром Чарльзом Леонардом Вулли примерно в 1920 году, имеет возраст свыше 4 000 лет. В настоящее время эта доска хранится в Британском музее в Лондоне. Предполагается, что эта игра была привилегией лишь королей и знати. Тот факт, что ее находили в гробницах, позволяет предположить, что ее помещали туда, чтобы усопший мог насладиться игрой в загробной жизни. Правила игры урских царей, как и древнеегипетской игры сенет, точно неизвестны.
Однако по дошедшим до нас предметам (помимо доски было найдено 7 белых и 7 черных фишек из перламутра и сланца и 6 игральных костей в форме правильной треугольной пирамиды) можно заключить, что целью игры было провести все фишки по доске быстрее соперника. Интересная форма доски из 20 клеток — два прямоугольника 3 ? 2 и 3 ? 4 соединены прямоугольником 1 ? 2 — позволяет предположить, каким путем нужно было провести фишки по доске.
Доска для игры урских царей. На рисунке обозначены первые ходы каждого игрока.
Для вычислений с дробями используются только так называемые египетские дроби, числитель которых равен единице, а знаменатель — натуральному числу. Этот любопытный способ вычислений, придуманный египтянами, в разное время изучали выдающиеся математики. Среди них Леонардо Пизанский, именуемый Фибоначчи (1175—1250), один из величайших математиков Средневековья. Именно он первым доказал осуществимость этого метода. Англичанин Джеймс Джозеф Сильвестр (1814—1897) открыл новые способы выражения дроби в виде суммы единичных дробей. Венгерский математик Пол Эрдёш (1913—1996), автор наибольшего числа статей среди математиков современности, проявлял особый интерес к теории чисел и сформулировал несколько открытых задач о египетских дробях, предложив собственные решения некоторых из них.