Преимущества и ограничения метода минимакса

Несомненно, теорема о минимаксе и метод, показанный в прошлых разделах, как для чистых, так и для смешанных стратегий, — это мощные инструменты для решения матричных игр и определения оптимальных результатов. Эта теорема применяется в экономике, политике, спорте и военном деле. С ее помощью были решены не только задачи, в которых имеются доминантные стратегии или седловая точка, но также задачи без седловой точки, в которых можно определить среднюю цену игры, оптимальную для обеих сторон, и необходимые смешанные стратегии.

Несмотря на это, во всех случаях мы предполагали, что выполняется одно условие: игроки действуют «разумно». Иными словами, каждый игрок считает, что его соперник всегда действует в своих интересах и использует стратегию, оптимальную с этой точки зрения. Но что происходит, если это не так и если один из игроков пытается обмануть оппонента?

Мортон Дэвис во введении в теорию игр рассказывает о различных исследованиях, которые проводились в 1950—1970-е годы. Целью исследований было наблюдение за поведением реальных игроков в матричных играх. Так, в 1964 году Ричард Брейер придумал игру, разрешимую в чистых стратегиях, то есть в этой игре было легко найти точку равновесия. Игрокам говорили, что против них в одних случаях будет играть опытный игрок, в других — игрок, который будет действовать случайным образом. В действительности игроки всегда играли против экспериментатора, который менял стратегию: иногда он следовал оптимальной стратегии Б, иногда действовал случайным образом. Платежная матрица этой игры выглядела так:

Игру можно быстро решить с помощью теоремы о минимаксе. Точка равновесия — элемент матрицы (б, Б), равновесное значение равно 1. Следовательно, игрок всегда должен выбирать стратегию б, экспериментатор — стратегию Б, и в каждой партии выигрыш игрока будет равен 1.

Опыты показали, что игроки применяли стратегию б, когда видели, что экспериментатор всегда придерживается стратегии Б. Напротив, когда экспериментатор действовал случайным образом, они меняли стратегию и обычно применяли вариант а, чтобы получить максимальный выигрыш, осознавая при этом возможность проигрыша. Последующие опросы показали, что более половины игроков считали, что систематическое следование стратегии Б со стороны экспериментатора «глупо», так как он соглашался с проигрышем в 1. Если бы он применял другие стратегии, то, «возможно», мог бы улучшить свой результат. Игроки не обратили внимания, что если бы они следовали стратегии б, то экспериментатору был бы гарантирован проигрыш минимум в 1.

Этот и другие похожие эксперименты показали, что разумные действия, направленные на увеличение выигрыша, встречаются не всегда. Люди предпочитают стратегии, которые, как кажется, приносят больший выигрыш. Лишь после того, как они несколько раз убедятся в обратном, они приходят к оптимальной стратегии. Если же в игре нет седловой точки и нужно применять смешанные стратегии, то реальное поведение игроков еще сложнее. В этом случае игрокам был известен алгоритм решения, но, несмотря на это, больше половины не стали утруждать себя вычислениями и действовали интуитивно. Как правило, их действия отличались от оптимальной смешанной стратегии.

Все подобные эксперименты показывают, что в реальных ситуациях нужно ставить под сомнение «разумные» предположения о том, что, например, соперник будет действовать оптимальным образом и в соответствии со своими интересами. Возможно, объяснение кроется в том, что минимаксная стратегия является защитной: она гарантирует результат, который будет оптимальным, когда соперник будет действовать разумно. Однако почему игрок не будет стараться получить больше гарантированного минимума?

В этой главе мы проанализировали игры с нулевой суммой и пришли к выводу: в играх такого типа существует оптимальная стратегия для каждого игрока, а также цена игры, которая позволяет определить средний выигрыш каждого. Исходные данные подобных игр всегда можно представить в виде так называемой платежной матрицы. В ней строки соответствуют стратегиям первого игрока, столбцы — стратегиям второго игрока. Вкратце игры для двух игроков с нулевой суммой решаются следующим способом.

Нужно вычислить максиминное значение (максимальное из минимальных) для первого игрока и минимаксное (минимальное из максимальных) для второго. Если эти значения совпадают, то оптимальные стратегии для обоих игроков имеют одинаковый результат (он называется ценой игры), и игра решена. В этом случае стратегии называются чистыми.

Если же максиминное и минимаксное значения не совпадают, нужно отложить в сторону чистые стратегии (с помощью которых определялись минимаксное и максиминное значения) и рассмотреть все чистые стратегии для каждого игрока, присвоив каждой стратегии определенную вероятность. Эти вероятности (их сумма будет равна 1) определят оптимальную смешанную стратегию и позволят рассчитать среднюю цену игры для каждого игрока.

Определение вероятностей и средней цены для каждого игрока осуществляется решением системы линейных уравнений (число уравнений зависит от количества стратегий), где неизвестными являются искомые вероятности и средняя цена игры. Если средняя цена для обоих игроков совпадает, то игра решена, и вероятности, найденные для каждого игрока, определяют его оптимальную стратегию, которая будет смешанной (так как в ней будет присутствовать элемент случайности).

Если найденные средние цены игры отличаются либо если одна из вероятностей оказалась отрицательной, то игра не решена. В этом случае ее нужно проанализировать снова, чтобы определить, возможно ли найти какую-либо доминантную стратегию. Если это невозможно, то описанный нами метод неприменим.