Месть шестидесятеричной системы?!
Как вы, должно быть, помните, древние вавилоняне по не вполне понятным причинам взяли за основание своей системы счисления число 60 (шестидесятеричная система). Число 60 играет свою роль и в последовательности Фибоначчи, хотя с вавилонской системой счисления это и не связано.
Числа Фибоначчи очень быстро возрастают, поскольку каждое следующее число получается сложением двух предыдущих. По сути дела, нам крупно повезло, что кролики не бессмертны, иначе они бы нас одолели. Пятое число Фибоначчи – всего-навсего 5, а 125-е – уже 59 425 114 757 512 643 212 875 125. Интересно, что число единиц повторяется периодически – через каждые 60 чисел. Например, второе число – 1, 62-е – 4 052 739 537 881 (тоже кончается на 1), 122-е – 14 028 366 653 498 915 298 923 761 – тоже кончается на 1, как и 182 и т. д. Подобным же образом 14-е число равно 377, 74-е – на 60 чисел дальше в последовательности – равно 1 304 969 544 928 657 и тоже кончается на 7 и т. д. Это свойство обнаружил в 1774 году французский математик, итальянец по рождению, Жозеф Луи Лагранж (1736–1813), из-под чьего пера вышло много трудов по теории чисел и механике (еще он изучал устойчивость солнечной системы). Последние две цифры, то есть 01, 01, 02, 03, 05, 08, 13, 21…, повторяются в последовательности с периодичностью 300, а последние три цифры – с периодичностью 1500 чисел. В 1963 году Стивен П. Геллер при помощи компьютера IBM 1620 доказал, что последние четыре цифры повторяются с периодичностью раз в 15 000, последние пять – с периодичностью раз в 150 000 и, наконец, повторение последних шести цифр появляется раз в 1 500 000; компьютеру потребовалось на поиск этой закономерности три часа работы. Геллер не задумался над тем фактом, что можно доказать общую теорему о периодичности последних цифр, и отметил: «Похоже, догадаться, каков будет следующий период, невозможно, однако, вероятно, можно написать новую программу для машины, которая допускает инициализацию в любом месте последовательности, и это сократит время работы компьютера настолько, чтобы получить новые данные». Однако вскоре после этого израильский математик Дов Ярден показал, что можно строго доказать, что для любого количества последних цифр, начиная с трех и больше, периодичность равна всего-навсего пятнадцать на десять в степени на единицу меньше, чем количество цифр (то есть для семи цифр это 15 ? 106 – то есть 15 миллионов).
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ