§ 3. Простые числа Ферма
§ 3. Простые числа Ферма
Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами Ферма являются
F0 = 22° + 1 = 3,
F1 = 22?+ 1 = 5,
F2 = 22? + 1 = 17,
F3 = 22? + 1 = 257,
F4 = 22?4 + 1 = 65 537.
В соответствии с этой последовательностью общая формула для простых чисел Ферма должна иметь вид
Fn = 22?+1. (2.3.1)
Ферма был абсолютно уверен, что все числа этого вида являются простыми, хотя он не проводил вычислений других чисел, кроме указанных пяти. Однако это предположение было сдано в архив неоправдавшихся математических гипотез после того, как Леонард Эйлер сделал еще один шаг и показал, что следующее число Ферма
F5 = 4 294 967 297 = 641 6 700 417
не является простым, что и показывает приведенная запись. Возможно, что этим история чисел Ферма была бы закончена, если бы числа Ферма не появились в совсем другой задаче, задаче построения правильных многоугольников при помощи циркуля и линейки.
Правильным многоугольником называется многоугольник, вершины которого лежат на некоторой окружности на одинаковых расстояниях друг от друга (рис. 13). Если у правильного многоугольника n вершин, то мы называем его правильным n-угольником.
Рис 13.
Если мы проведем n радиусов, соединяющих центр окружности с вершинами, то получим n центральных углов величиной
1/n 360°
каждый. Если можно построить угол, имеющий эту величину, то можно построить и этот n-угольник.
Древние греки очень хотели найти методы построения правильных многоугольников с помощью циркуля и линейки. Разумеется, они умели строить простейшие из них — равносторонний треугольник и квадрат. С помощью повторного деления пополам центрального угла они могли также построить правильные многоугольники с
4, 8, 16, 32…,
3, 6, 12, 24…
вершинами. Кроме того, они умели строить правильный пятиугольник, и следовательно, также правильные многоугольники с
5, 10, 20, 40…
вершинами. Был также получен еще один тип правильного многоугольника. Центральный угол в правильном 15-угольнике равен
1/15 360° = 24°,
и он может быть получен с помощью утла в 72°, соответствующего правильному пятиугольнику, и угла в 120°, соответствующего правильному треугольнику, если удвоить первый угол и вычесть из него второй. Следовательно, мы можем построить правильные многоугольники с 15, 30, 60, 120… сторонами.
В таком состоянии проблема оставалась до 1801 года, когда вышла работа по теории чисел молодого немецкого математика К. Ф. Гаусса (1777–1855) «Арифметические исследования». Она открыла новую эпоху в математике. Гаусс превзошел греческих геометров не только в том, что указал метод построения циркулем и линейкой правильного 17-угольника, но и пошел гораздо дальше. Для всех чисел n он определил, какие n-угольники могут быть построены таким образом, а какие нет. Сейчас мы опишем результаты, полученные Гауссом.
Выше мы отмечали, что из правильного n-угольника можно получить правильный 2n-угольник, деля каждый центральный угол пополам. С другой стороны, из 2n-угольника можно получить n-угольник, используя лишь каждую вторую вершину. Это показывает, что достаточно провести поиск правильных многоугольников, которые могут быть построены с помощью циркуля и линейки, только среди многоугольников с нечетным числом вершин. Гаусс доказал, что правильный n-угольник с нечетным числом вершин может быть построен с помощью циркуля и линейки тогда, и только тогда, если число n является простым числом Ферма или произведением нескольких различных простых чисел Ферма.
Что это нам дает для небольших значений n? Очевидно, что 3-угольник и 5-угольник могут быть построены, в то время как 7-угольник не может, так как 7 не является простым числом Ферма. Не может быть построен и 9-угольник, так как 9 = 3 • 3 является произведением двух равных простых чисел Ферма.
Открытие Гаусса, естественно, возродило интерес к числам Ферма (2.3.1). За последнее столетие были предприняты поистине героические поиски, вручную, без помощи машин, новых простых чисел Ферма. В настоящее время эти вычисления продолжаются со все возрастающей скоростью с помощью ЭВМ. Однако до сих пор результаты были отрицательными. Ни одного нового простого числа Ферма не было найдено и сейчас многие математики склонны считать, что их больше нет.
Система задач 2.3.
1. Найдите все нечетные числа n < 100, для которых можно построить правильный n-угольник.
2. Как построить правильный 51-угольник, имея правильный 17-угольник?
3. Если не существует простых чисел Ферма, кроме выше указанных пяти, то сколько существует правильных n-угольников (n нечетно), которые могут быть построены циркулем и линейкой? Каково то наибольшее нечетное n, для которого может быть построен правильный n-угольник?