§ 5. Дружественные числа

We use cookies. Read the Privacy and Cookie Policy

§ 5. Дружественные числа

Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму числу, и наоборот, то считалось, что это свидетельствует об их духовной близости. В действительности греки знали всего лишь одну пару таких чисел, а именно:

220 = 22 • 5 • 11, 284 = 22 • 71.

Суммами их делителей являются соответственно

1 + 2 + 4 + 5 +10 + 20 + 11 + 22 + 44 + 55 + 110 = 284,

1 + 2 + 4 + 71 + 142 = 220.

Эта пара дружественных чисел оставалась единственной известной до тех пор, пока Пьеру Ферма не удалось найти следующую пару:

17 296 = 24 • 23 • 47, 18 416 = 24 • 1151.

Поиски пар дружественных чисел чрезвычайно удобно вести с помощью ЭВМ. Для каждого числа n при помощи машины определяются все делители этого числа (? n) и их сумма m. После этого производится такая же операция с числом m. Если при этом вновь получается первоначальное число n, то пара чисел (n, m) оказывается дружественной. Недавно этим способом в Йельском университете на ЭВМ IBM 7094 были проверены все числа до одного миллиона. В результате была получена коллекция из 42 пар дружественных чисел; некоторые из них оказались ранее неизвестными. Все пары дружественных чисел до 100 000 приведены в табл. 2. При помощи этого метода, как нетрудно видеть, одновременно «вылавливаются» и совершенные числа. Если возникает желание продолжать поиски дальше, то, конечно, это можно сделать, но придется затратить большое количество машинного времени.

Таблица 2

Дружественные числа до 100 000

В действительности мы очень мало знаем о свойствах пар дружественных чисел, однако, можно на основе наших таблиц высказать несколько предположений. Например, отношение одного из них к другому, по-видимому, должно все больше и больше приближаться к 1 по мере того, как они увеличиваются. Из таблицы видно, что эти числа бывают либо оба четными, либо оба нечетными, но не было найдено случая, когда одно число четно, а другое нечетно, хотя поиски дружественных чисел такого вида были проведены среди всех чисел n ? 1 3 000 000 000.