§ 3. Несколько задач о делителях
§ 3. Несколько задач о делителях
Существует единственное число n = 1, которое имеет только один делитель. Числами с ровно двумя делителями являются простые числа n = р: они делятся на 1 и на р. Наименьшим числом, имеющим два делителя, является, таким образом, р = 2.
Исследуем числа, имеющие ровно 3 делителя. В соответствии с (3.2.3) имеем
3 = (?1 + 1) (?2 + 1)… (?r + 1).
Так как 3 — простое число, то справа может существовать лишь один множитель, не равный 1. Отсюда r = 1, a ?1 = 2. Таким образом,
n = p12.
Наименьшим числом с 3 делителями является n = 22 = 4. Это соображение, примененное к общему случаю, когда число делителей q является простым числом, позволяет получить, что
q = ?1 + 1, т. е. ?1 = q — 1 и n = р1q-1;
наименьшим из таких чисел является
n = 2q-1.
Рассмотрим следующий случай, когда существует ровно 4 делителя. Тогда соотношение
4 = (?1 + 1) (?2 + 1),
возможно только тогда, когда
?1 = 3, ?2 = 0 или ?1 = ?2 = 1.
Это приводит к двум возможностям:
n = p13, n = p1 p2;
наименьшее число с 4 делителями — это n = 6.
В том случае, когда имеется 6 делителей, должно выполняться соотношение
6 = (?1 + 1) (?2 + 1),
что возможно лишь тогда, когда
?1 = 5, ?2 = 0 или ?1 = 2, ?2 = 1.
Это дает две возможности:
n = p15, n = p12 p2;
при этом наименьшее значение имеет место в последнем случае, когда
p1 = 2, p2 = 3, n =12.
Этот метод можно использовать для вычисления наименьших натуральных чисел, имеющих любое заданное количество делителей.
Существуют таблицы, указывающие количество делителей для различных чисел. Они начинаются следующим образом:
Вы легко можете ее самостоятельно продолжить.
Будем говорить, что натуральное число n является сверхсоставным, если количество делителей у каждого числа, меньшего n, меньше, чем количество делителей у числа n. Глядя на нашу небольшую таблицу, мы видим, что
1, 2, 4, 6, 12
являются первыми пятью сверхсоставными числами. О свойствах этих чисел известно еще очень мало.
Система задач 3.3.
1. Взвод из 12 солдат может маршировать 6-ю различными способами: 12 ? 1, 6 ? 2, 4 ? 3, 3 ? 4, 2 ? 6, 1 ? 12. Какую наименьшую численность должны иметь группы людей, которые могут маршировать 8, 10, 12 и 72 способами?
2. Найдите наименьшие натуральные числа, имеющие: а) 14 делителей, б) 18 делителей ив) 100 делителей.
3. Найдите два первых сверхсоставных числа, следующих за числом 12.
4. Охарактеризуйте все натуральные числа, количество делителей которых является произведением двух простых чисел.