§ 1. Числа
§ 1. Числа
«Все есть число» — учили древние пифагорейцы[8]. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда считают нас. В нашу жизнь прочно вошли: номера домов, квартир, телефонов, счетов, почтовые индексы. Каждый день наполнен потоком счетов, чеков и других бухгалтерских документов. Государственный бюджет исчисляется в миллиардах, а горы статистических данных являются принятым доводом в спорах. Эти цифры «крутятся» в компьютерах, которые анализируют состояние производства, следят за траекториями спутников и исследуют атомные ядра со скоростью до одного миллиарда операций в секунду.
Ко всему этому вела длинная дорога, начавшаяся с первых попыток человека систематизировать окружающие его числа, когда они стали столь большими, что их нельзя уже было посчитать на пальцах. Были перепробованы различные способы группировки чисел; большинство из них осталось на обочине этого пути, не выдержав конкуренции с другими системами. К настоящему времени, по счастью, наша десятеричная, или десятичная, система счисления, основанная на группировании десятками, принята почти всюду; в некотором отношении эта система, по-видимому, случайно, оказалась той золотой серединой, которая одинаково хорошо удовлетворяет разнообразным требованиям при работе с числами.
Нет необходимости подробно описывать эту систему. Первые два года обучения в школе дают нам на всю жизнь почти подсознательное знание того, что означает последовательность цифр, например,
75 = 7 • 10 + 5,
1066 = 1 • 103 + 0 • 102 + 6 • 10 + 6,
1970 = 1 • 103 + 9 • 102 + 7 • 10 + 0.
И вообще, в системе, основанной на числе 10,
_________________
аn аn-1 … a2 а1 a0 (6.1.1)
означает число
N = an • 10n + an-1•10n-1 +….. + a2 • 102 + a1 • 10 + a0, (6.1.2)
где коэффициенты, или цифры, аi могут принимать следующие значения:
аi = {0, 1…. 9}. (6.1.3)
Число b = 10 называется основанием этой системы. Индо-арабская числовая система пришла в Европу с Востока около 1200 г. нашей эры, и с тех пор не оспаривалась. Она известна как позиционная система, так как место каждой цифры определяет ее значение; использование символа 0 дает возможность просто и безболезненно обозначать пустующее место. Более того, оказалось, что эта система очень удобна при арифметических операциях с числами: сложении, вычитании, умножении и делении.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 1 Числа
Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор — Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,
Приложение Фигурные числа
Приложение Фигурные числа Фигурное число — это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,
§ 4. Фигурные числа
§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого
ГЛАВА 2 ПРОСТЫЕ ЧИСЛА
ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 • 3, 9 = 3 • 3, 30 = 2 • 15 = 3 • 10,в то время как другие, например,3, 7, 13, 37,не
§ 2. Простые числа Мерсенна
§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких
§ 3. Простые числа Ферма
§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами
§ 4. Совершенные числа
§ 4. Совершенные числа Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому
§ 5. Дружественные числа
§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму
§ 2. Взаимно простые числа
§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий
§ 1. Числа
§ 1. Числа «Все есть число» — учили древние пифагорейцы[8]. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда
Глава 4. Длины и числа
Глава 4. Длины и числа Длина отрезка есть некое соотнесённое с отрезком число. Из теоремы о несоизмеримости немедленно следует, что длина диагонали единичного квадрата, то есть квадрата со стороной длины единица, не может быть выражена ни целым, ни дробным числом. Таким
ЧИСЛА, ЧИСЛА, ЧИСЛА…
ЧИСЛА, ЧИСЛА, ЧИСЛА… — Есть такая книга, — начал Мате, — «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога
44. Какие числа?
44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не
47. Три числа
47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их
44. Какие числа?
44. Какие числа? Ответ прост: 1 и 7. Других таких чисел
Магические числа
Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.