Теорема Бернулли
Математиков часто приводит в восхищение величие и красота абстрактного принципа. Их увлекает красота, возникающая, когда теорию можно изящно применить к природному миру. Швейцарский математик Якоб Бернулли торжествовал, когда ему удалось доказать слабый закон больших чисел после знакомства с «Книгой об азартных играх» Кардано. Этот закон поистине удивителен, ведь он говорит нам, что, пусть природа и непредсказуема и содержит неизмеримое число компонентов и переменных, у нас все же имеются поразительно искусные способы измерить ее тайны{47}. Он дает нам удивительную возможность разобраться с неопределенностью.
Когда Якоб Бернулли умер в 1705 г., он оставил кипы неоконченных и неопубликованных рукописей своему племяннику Николаю Бернулли. В течение следующих восьми лет Николай разбирался в бумагах своего дяди и наконец опубликовал «Искусство предположений» (Ars Conjectandi) – революционную работу, за которой и сейчас признается новаторство в области описания важнейших понятий теории относительности. В посмертно опубликованной книге в 1713 г. применен уникальный подход, реализованный в виде примера, где говорится об урне, наполненной черными и белыми жетонами, а нам необходимо найти соотношение черных и белых, даже если мы не знаем, что в урне содержится 3000 белых жетонов и 2000 черных. Надо понимать, что существует математическая вероятность, представленная в виде отношения числа белых жетонов к числу черных жетонов. Но числа эти нам неизвестны. Как в таком случае узнать математическую вероятность? Вот план Бернулли: вы вслепую выбираете один жетон, записываете его цвет, кладете его обратно и трясете урну. Если вы повторите это действие, вслепую выбирая жетоны один за другим достаточно долгое время, то по мере увеличения числа попыток становитесь все ближе в этой таинственной математической вероятности. Предположим, например, что после 200 слепых выборок вы записали: 120 белых и 80 черных. Тогда отношение числа белых к черным составит 3 к 2. Далее, вы можете предположить, что вероятность выбрать белый – 120/200, или 3/5.
«Искусство предположений» Бернулли дает нам слабый закон больших чисел. Если подбросить правильную монету N раз в надежде, что орел выпадет k раз, теорема говорит о вероятности того, насколько близко будет отношение k/N к 1/2, математической вероятности того, что орел выпадет за одну попытку. Некоторые игроки, выдавая желаемое за действительное, полагают, будто это означает, что для больших значений N исходы событий приблизятся к вероятностям этих исходов. Таким образом, если опять использовать бросание монеты в качестве примера, заблуждающийся игрок полагает, что, поскольку p = 1/2, общее число исходов орел сойдется к общему числу исходов решка в долгосрочной перспективе. Теорема говорит только о том, что существует возможность сходимости общего результата к достоверности в долгосрочной перспективе. Нет никаких гарантий того, что это произойдет в любом из отдельных случаев. В качестве примера давайте предположим, что у нас есть игра, состоящая из N повторяющихся событий, таких как бросание монеты N раз, и мы считаем число раз, когда выпадает орел. Математическая вероятность того, что правильная монета выпадает орлом, – 1/2. Что мы увидим, подбрасывая монету в реальной жизни? Будет ли коэффициент успешности испытаний близок к 1/2, скажем, настолько близок, что будет в пределах 1/10 000? На самом деле ответа мы дать не можем, но мы можем выразиться иначе и спросить: будет ли вероятность того, что разность k/N и 1/2 меньше, чем 1/10 000, когда-нибудь больше, чем, скажем, 0,999. Теорема Бернулли говорит, что да, такое случится, если N продолжит увеличиваться со временем. Но она не исключает полностью случаев, когда разность между k/N и 1/2 больше, чем 1/10 000, даже для больших значений N. На деле, даже если коэффициент успешности испытаний k/N приближается к 1/2, нет гарантии, что он продолжит это делать. Кроме того, оказывается, что немного усиленная версия теоремы Бернулли говорит нам: хотя коэффициент успешности испытаний k/N, очевидно, сходится к 1/2, реальные значения успешности демонстрируют склонность ко все более своенравному поведению. Рассмотрим следующее удивительное утверждение: вероятность расхождения реального числа успешных испытаний с ожидаемым числом k/2 успешных испытаний (т. е. выпадения орлов) становится все больше и больше по мере увеличения числа испытаний[9]. Хотя это утверждение и противоречит нашей интуиции, но оно верно{48}. Однако оно также говорит, что в долгосрочной перспективе разность между действительным средним, которое мы получаем эмпирически после испытаний (и совершенно нам не известное до момента завершения этих испытаний), и математически вычисленным средним может быть сколь угодно малой при условии, что число испытаний N достаточно велико. Это означает, что случайные эмпирические события (не имеющие совершенно никакой памяти о каждом из исходов) имеют среднее, близкое к математически вычисленному числу!
Бернулли был так доволен своей теоремой, что предполагал ее применение к наиболее важным событиям всего сущего. В своем «Искусстве предположений» он написал:
Этот замечательный результат показывает нам, что, если бы наблюдение всех событий продолжилось вечно (и вероятность обратилась бы в совершенную достоверность), тогда мы бы наблюдали, как все явления случаются с постоянными коэффициентами и неизменной цикличностью. Таким образом, даже за наиболее случайными и удачными нам надо будет признать определенную квазинеобходимость и, так сказать, фатальность. Я не знаю, захотел бы Платон включить этот результат в догмат о всеобщем возвращении вещей в их предыдущие положения [апокастасис], в котором он предсказывал, что по прошествии бесчисленного множества веков все вернется в свое исходное положение{49}.
В теории теорема Бернулли должна была стать интеллектуальной бомбой, чудом математической оценки неопределенности. Она сулила предсказание будущего. Здесь мы впервые встречаем математический закон, который дал нам замечательный и простой способ понять, как ведет себя случайность в реальном мире; теорему, которую Бернулли с гордостью называл строгой, оригинальной и такой блистательной, что она придала значимость всем разделам его работы. Но Бернулли был разочарован некоторыми из своих экспериментов, которые относились к задачам, связанным с болезнями и погодой. Он честолюбиво задал для себя предельно высокий критерий достоверности даже по сегодняшним стандартам{50}.
Бернулли дал нам огромные возможности для оценки неопределенного поведения природы, а также азартных игр – метод расчета математического ожидания без какой-либо априорной информации. «В самом деле, если заменить урну, к примеру, на воздух или человеческое тело, содержащие в себе возбудителя [fomitem] различных изменений в погоде или болезней, как урна содержит жетоны, мы сможем ровно таким же образом определить посредством наблюдения, насколько проще может произойти то или иное событие в этих объектах»{51}.
Когда Эйнштейн остроумно заметил: «Бог не играет в кости с Вселенной», – он говорил о возникшей тогда квантовой механике, которая не могла достоверно предсказывать исходы рассматриваемых ею явлений{52}. Фортуна никогда не согласится с тем, что результат броска игральных костей на самом деле неслучаен, как лотерейная комиссия никогда не признает, что шарики для пинг-понга с выигрышными номерами выпадают неслучайно. Никто еще не предложил машину, дающую совершенно случайные числа. «Брошенные кости, – пишет физик Роберт Оэртер, – по сути своей не случайны; исход только кажется случайным из-за нашего невежества относительно маленьких деталей, скрытых переменных (например, угла пуска или трения), которые определяют исход броска»{53}. У большинства феноменов в нашей Вселенной (в особенности тех, которыми движут атомные силы) слишком много этих скрытых переменных, чтобы математика могла предсказывать исходы. Мы, как правило, не осведомлены о подробностях таких чудес. И все же у нас есть этот удивительный дар, который был тайной вплоть до XVII в., – дар, дающий ключ к пониманию случайности, а также средства к предсказанию будущего: знание о том, что большинство явлений неквантового механического мира подчиняются слабому закону больших чисел, пусть каждое явление в отдельности и не обладает памятью о собственном прошлом. Играет Бог в кости или нет – долгосрочные тенденции ожиданий предсказуемы и почти всегда достоверны{54}.
Доказательство Бернулли опирается на число возможных комбинаций предметов, и их расчет не имеет ничего общего со случайными поворотами фортуны. Эдит Дадли Силла, известная переводчица «Искусства предположений», говорит, что Бернулли объяснял связь посредством теологии. Она писала: «Он уверяет, что в сознании или воле Бога есть четкие и определенные ситуации, известные Богу вечно, и со временем проявляющие себя в опыте или наблюдении». Говоря о «вечности», она имеет в виду то, что Бернулли игнорировал фактор времени в расчетах коэффициентов успешности случайных событий. Силла указывает на следующий довод Бернулли: «Нет существенной разницы между тем, чтобы выбросить желаемым образом одну игральную кость в течение некоторого времени, и тем, чтобы бросить сразу такое число игральных костей, которое равнялось бы числу сделанных бросков одной кости»{55}.
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ