Распределение вероятностей
На рис. 7.2 показана вероятность выигрыша при ставке на «красное» в 100 турах рулетки. Мы уже видели, какую форму принимает график, когда рассматривали примеры вычислений в табл. 7.1 и коэффициенты, получаемые в результате разложения двучленов (p + q)n. Распределение столбцов на графике справедливо называют биномиальным распределением. Слово «биномиальное» происходит от конструкции, основанной на двух мономах p и q. По мере увеличения n график выравнивается и принимает форму колокола. Чем больше n, тем плавнее кривая.
Выберем некоторое большое значение n. Мы изменим гистограмму, сохранив без изменений ее площадь, а следовательно, и вероятность. Поскольку основание каждого столбца[11] имеет ширину в одно деление, распределение вероятностей представлено в виде площадей прямоугольников, а также их высотами. Некоторые разумные изменения – сдвиг, сжатие и растяжение – дают нам новый график, который сохраняет всю полезную информацию оригинала{71}. Конечно, теперь, в измененном графике, вертикальная ось уже не обозначает вероятность. Вероятность заключена в площадях прямоугольников, а эти площади не изменялись, потому что мы растянули график по вертикали и сжали по горизонтали в одной пропорции[12].
Чего мы достигли? Вот оно – чудо, вдохновенная идея. Кривую (гистограмма биномиального распределения, показанная на рис. 7.2), которая изображает вероятность выигрыша при ставке на «красное» в 100 турах рулетки, можно близко аппроксимировать к одной определенной математической кривой. Тут важно понимать, что одна эта кривая описывает великое множество природных феноменов, являющихся результатами случайностей. Поразительно, но эта кривая моделирует события рулетки, хотя и не имеет очевидной связи с шариками, падающими в красные ячейки колеса рулетки. Еще более удивительно, что та же кривая моделирует также и орлянку. Всего одна кривая описывает вероятности столь различных явлений. Чтобы получить информацию о вероятности конкретного явления, нам нужно ввести некоторые данные в модель. Мы должны предоставить два числа – среднее (среднее значение) и стандартное отклонение (мера разброса от среднего){72}. Два этих числа дают информацию для модели, скажем, о рулетке, а именно: вероятность наступления события p (шарик падает в красную ячейку) – 9/19. Как только у нас есть эти конкретные p и N (число сыгранных туров рулетки), мы можем вычислить стандартное отклонение для нашей конкретной игры – ставки на «красное» в рулетке{73}. Это мера того, насколько велик разброс исходов от среднего, или стандартное отклонение от среднего, чаще называемое просто стандартным отклонением{74}.
Итак, каждая кривая биномиального распределения трансформируется с помощью математического трюка (посредством сдвигов и масштабирования) в особую могущественную кривую нормального распределения, график которой изображен на рис. 7.4{75}.
Числа в основании кривой на рис. 7.4 – это стандартные отклонения от среднего. Мы объединили испытания в группы по стандартному отклонению. Отдельные вероятности исходов событий теперь не видны. Переменная X под кривой на рис. 7.4 показывает отклонение числа эмпирических успешных исходов от наиболее вероятного их числа. Иными словами, X, переменная горизонтальной оси, измеряется в стандартных отклонениях. Высота кривой – это уже не вероятность, поскольку мы ее масштабировали и сжали, сохранив площадь под кривой. Но в обмен на это масштабирование и сжатие мы получаем некоторые ценные сведения. Первое: около 68 % площади под кривой лежат на одном стандартном отклонении от среднего и около 95 % площади – на двух стандартных отклонениях от среднего. Второе: одно стандартное отклонение отмечено точками перегиба, т. е. точками на кривой, где кривая меняет форму с вогнутой на выпуклую.

Хотя одно стандартное отклонение для исхода «красное» в 100 турах рулетки – это не то же самое, что стандартное отклонение для орла в 100 бросках монеты, чудесным образом кривая и в том и в другом случае одинакова. Но толкование значения этих кривых будет различным. Хотя кривая на рис. 7.4 может быть одинаковой для распределения в различных азартных играх, разметку на осях нужно рассматривать в соответствии с конкретными расчетами среднего и стандартного отклонения. Эти данные будут зависеть от числа туров и вероятностей положительных исходов для конкретных игр.
Когда мы исследуем частотное распределение, то склонны смотреть в основном на отклонение от наиболее вероятного значения. Но то, что происходит далеко за пределами наиболее вероятных значений, может иметь невероятно сильное воздействие на общий накопленный результат. Мы обращаем мало внимания на эту внешнюю область, потому что в основном думаем о центре распределения и явлениях, которые наиболее вероятны, а не о том, что могло бы произойти в самых маловероятных случаях.
Принимаем ли мы в расчет маловероятные ситуации самых плохих сценариев? Или говорим, что они настолько редки, что их следует просто отбросить? Это и есть совпадения или случайности природы, реальные физические явления, движущиеся с попутным ветром вероятности. По мере увеличения числа бросков «правильной» монеты общее число орлов может значительно превысить общее число решек (или наоборот). Например, ситуация, когда вы бросаете монету 100 раз и каждый раз выпадает орел, маловероятна, но возможна, несмотря на то что шансы выбросить орла при каждом подбрасывании 1 к 1. Все же будем немного более сдержанны и рассмотрим случай, где из 100 бросков мы имеем исходы в 41 орел и 59 решек, или вероятности 0,41 и 0,59 соответственно[13]. Похоже, что разница велика, но из 100 бросков разница между орлом и решкой на самом деле всего лишь 18. Однако, если вы бросите монету 500 раз (как мы сделали в главе 6) и найдете, что вероятности стали значительно ближе к 1/2, скажем, где пропорция орлов в общем числе бросков равняется 0,45, а решек – 0,55, итого у нас будет 225 орлов и 275 решек, разность составит 50.
Иными словами, разность может продолжать увеличиваться, даже если коэффициенты приближаются к 1/2. Добавим к этому понимание, что для распределения результатов нет прогноза, мы находим его по мере того, как увеличивается число бросков, и то же самое происходит с вероятностью возникновения все большего и большего числа непрерывных серий орлов. Мы могли бросить монету 100 раз, сделать паузу, бросить еще 100 раз, снова сделать паузу и продолжить дальше подобным образом. Каждый раз мы могли бы начинать вести счет заново. Тогда каким же образом выходит, что разность между решками и орлами может быть 50 за 500 бросков, но, возможно, 10 за 100 бросков? Когда случится разница в 50? Может ли она случиться на последних 100 бросках подряд? Конечно, это тоже будет совпадением, но у каждой возможности есть небольшой шанс!
В теории в рулетку играют шариком идеально сферической формы, который крутится и ударяется о безупречно сбалансированное колесо с идеально ровными ячейками в совершенно неподвижной комнате в мире, который мы никогда не видели и который никогда не существовал. Реальные ставки делают в физическом мире, где шарики и колеса производятся с предельно жесткими допусками, но эти шарики и колеса изготавливают машины, созданные человеком. Магическая связь между идеальным и физическим настолько замысловата, что наше непонимание ослепляет нас.
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ