Задача 106 (рис. 276)

Рис. 276.

Решение. Чтобы найти отношение СК/КМ, применим теорему Менелая к треугольнику АСМ и секущей BN. Получим: CK/KM ? MB/BA ? AN/NC = 1. Так как MB/BA = 2/3, AN/NC = 2, то CK/KM = 3/4.

Аналогично, применив теорему Менелая к треугольнику ABN и секущей СМ, находим BK/KN ? CN/AC ? AM/MB = BK/KN ? 1/3 ? 1/2 = 1, откуда BK/KN = 6.

Ответ: 6; 3/4.