Задача 118 (рис. 279)

Рис. 279.

Решение. Пусть АС = а; АВ = ВС = b, BF = y, EF = x. ?ADE ~ ?EFC, поэтому FC/DE = FE/DA; (b – y)/y = x/(b – x); b2= by – bx + xy = xy. Отсюда x + у = b; PDBFE = 2(x + y) = 2b, т. е. периметр параллелограмма не зависит от х и y, а зависит только от длины боковой стороны треугольника, другими словами, для данного треугольника периметр вписанного в него параллелограмма есть величина постоянная.