Задача 154 (рис. 299)

Рис. 299.

Решение. Пусть D – проекция точки F на прямую d. Середину О отрезка DF примем за начало прямоугольной системы координат, а прямую OF – за ось ординат. Точке F отнесём координаты (0; 1). Прямая d будет иметь уравнение у = -1. Пусть М(х; y) – произвольная точка плоскости. Тогда

и MN = |у + 1 |, где MN – расстояние от точки М до прямой d. Если

Возведя обе части в квадрат, получим уравнение у = 1/4x2.

Обратно, если координаты точки М удовлетворяют этому уравнению, то х2= 4у и, следовательно,

Заметим, что если вместо DF = 2 положить DF = р, то получим уравнение х2= 2ру.

Из школьного курса алгебры известно, что линия, определяемая уравнением у = ах2, называется параболой.