Билет № 18
1. Теорема о разложении вектора по базису.
2. Докажите, что S = рr, где S– площадь треугольника, p – полупериметр треугольника, r – радиус вписанной окружности.
3. Известно, что в трапецию ABCD с основаниями AD и ВС можно вписать окружность и около неё можно описать окружность, EF – её средняя линия. Известно, что АВ + CD + EF = 18. Найдите периметр трапеции.
4. В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен 1.