6. Источники равновесия

We use cookies. Read the Privacy and Cookie Policy

Ежа невозможно как следует причесать. Всегда остается место, в котором иголки торчат в разные стороны.

В 1910 году голландский математик Лёйтзен Брауэр доказал одну странную математическую теорему[55]. Возьмите чашку кофе и как следует перемешайте его ложкой — сколь угодно сильно, но так, чтобы кофе оставался единой массой, не зачерпывая его ложкой и не выливая обратно. Закончив мешать, дождитесь, пока жидкость перестанет двигаться. Теорема Брауэра утверждает, что в кофе будет атом, который останется точно в том же месте, в котором он был до перемешивания. Другими словами, невозможно перемешать кофе в чашке так, чтобы все его атомы оказались в положениях, отличных от тех, в которых были до этого.

Можно предположить, что, если такой атом действительно существует, в конце перемешивания можно слегка сдвинуть его с места; в конце концов, никто не говорил нам, когда именно следует прекратить перемешивание. Но теорема Брауэра гарантирует, что при смещении этого конкретного атома какой-нибудь другой атом в какой-нибудь другой точке чашки сместится в свое исходное положение.

Разумеется, математики не выводят свои теоремы из чашки кофе. Я не хочу сказать, что кофе не играет никакой роли в создании математических теорем. Венгерский математик Альфред Реньи, который жить не мог без этого напитка, заметил однажды, что «математик — это устройство для преобразования кофе в теоремы». Но математики требуют точности, и их доказательство основывается не на чашке кофе, а на замкнутом, компактном и выпуклом множестве в некотором топологическом пространстве; вместо атомов они рассматривают точки этого пространства, а вместо перемешивания — отображение данного множества на само себя. Условие сохранения единой массы кофе выражается требованием непрерывности отображения. Тогда теорема формулируется следующим образом: непрерывное отображение из замкнутого, компактного и выпуклого множества имеет неподвижную точку. Это утверждение называется теоремой Брауэра о неподвижной точке.

Мы понимаем, насколько нестрогим был наш пример с чашкой кофе. Не случайно математики говорят о вещах более абстрактных, чем кофеиносодержащие напитки. Чашка кофе не является замкнутым множеством в математическом смысле слова. Ее границей служит стенка чашки, которая не является частью кофе; к тому же во время перемешивания кофе из него испаряются молекулы воды. Тем не менее такой конкретный пример живо иллюстрирует теорему; хотя ему недостает точности, он пробуждает интерес к задаче.

При отказе от условия непрерывности исчезает и необходимость неподвижной точки. Например, если нам каким-то образом удастся отделить нижнюю половину кофе от верхней (скажем, заморозив весь кофе и распилив его пополам), а затем поместить нижнюю половину наверх, а верхнюю — вниз, то каждый атом, содержащийся в кофе, окажется либо выше, либо ниже своего исходного положения: никаких неподвижных точек в кофе не останется.

Таким образом, теорема Брауэра о неподвижной точке утверждает, что простым перемешиванием невозможно поменять местами верхнюю и нижнюю половины кофе в их исходной конфигурации. Мы можем мешать как угодно, но Брауэр гарантирует, что в каждый момент существует неподвижная точка, а в той конфигурации, которую мы хотим получить, неподвижных точек нет. Теорема Брауэра о неподвижной точке представляет собой важный математический результат отчасти потому, что она настолько не соответствует нашим интуитивным представлениям: казалось бы, должен существовать способ, который перемещает все атомы в другие точки чашки. Аналогичным образом кажется, что должна существовать возможность причесать ежа. Речь идет о еже, свернувшемся в идеальный шар. Одно из следствий из теоремы Брауэра о неподвижной точке гласит, что, как бы мы его ни причесывали, на поверхности шара всегда останется по меньшей мере одно завихрение — участок, на котором иголки торчат в разные стороны.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ