Масштабная инвариантность как закон природы
Мандельброт обнаружил, что графики поведения финансовых рынков имеют многие из свойств фрактальных кривых. Это обстоятельство позволило ответить на вопрос о возможности определения масштаба графиков финансового рынка. Если они фрактальны и, следовательно, самоподобны во всех масштабах, это означает, что специалисты по финансам не упускали из виду какой-нибудь тонкости, которая позволила бы им определять масштаб таких графиков. Если графики действительно самоподобны, для этого попросту не существует даже теоретической возможности. По-видимому, финансовые рынки масштабно-инвариантны по самой своей природе.
Параметры фрактала определяют ход его развития при генерировании — так же как начальное состояние двойного маятника определяет его траекторию. В случае маятника мы видели, что малые изменения параметров порождают гигантские различия в траектории. Происходит ли то же самое с фракталами? Насколько чувствительно их развитие к начальным условиям? Как мы увидим дальше, ответ на этот вопрос — «чрезвычайно чувствительно».
Хотя исходно Мандельброт разработал концепцию фракталов для моделирования поведения финансовых рынков, вскоре он начал подозревать, что фракталы могут быть в природе не исключением, а правилом. Например, береговые линии образуют зигзаги произвольной формы, весьма напоминающие кривую средних значений индекса Доу — Джонса за прошлую неделю; иногда от них отходят острова, похожие на клочковатые облака. На расстоянии их изрезанные контуры кажутся четко определенными, но чем больше мы к ним приближаемся, тем виднее становятся все более многочисленные замысловатые извивы, и в конце концов исчезает почти всякая возможность сказать, находится ли та или иная конкретная точка — камешек или песчинка — в море или на берегу. На самом деле береговые линии так же фрактальны, как границы множества Мандельброта.
Первые мысли Мандельброта о фракталах были изложены в его статье 1967 года под названием «Какова длина побережья Великобритании? Статистическое самоподобие и фрактальная размерность» (How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension)[86]. В ней он описывает так называемый «парадокс береговой линии» — тот факт, что результат измерения длины береговой линии становится тем больше, чем более короткая линейка используется для измерений, потому что такая линейка позволяет измерить большее количество изгибов и зигзагов. Разумеется, к сходному выводу можно прийти, даже измеряя длину простой дуги окружности, но там увеличение измеренной длины с уменьшением длины линейки имеет фиксированный предел, который мы и называем длиной дуги. То же справедливо и в отношении других обычных кривых, но не фрактальных линий, длина которых расходится до бесконечности. В той мере, в какой береговая линия подобна фракталу, она содержит, по существу, бесконечное количество отрезков, доступных измерению, — и больших, и малых. Мандельброт показал, что ни точно определить береговую линию Великобритании, ни точно измерить ее длину невозможно. У нее нет длины — так же, как у распределения Коши, что показала нам наша подруга Фиби, нет стандартного отклонения. Таким образом, фракталы, как и распределение Коши, приводят нас в Диконию.
Это явление настолько вдохновило Мандельброта, что он начал коллекционировать примеры фрактальных явлений в природе. При этом он обнаружил: стоит понять, что именно ты ищешь, и ты встречаешь это практически повсюду. Как мы уже видели, листья папоротника похожи на фракталы; то же можно сказать о разветвленных системах кротовых туннелей. Подобны фракталам и горные вершины, и снежинки, и облака, и границы норвежских фьордов. Даже человеческий мозг можно считать сложным фракталом. По итогам всех этих наблюдений в 1983 году Мандельброт опубликовал книгу под названием «Фрактальная геометрия природы» (The Fractal Geometry of Nature).
Фракталы заинтересовали и психологов. Они провели исследования, чтобы выяснить, какого рода изображения (пейзажи и абстрактные картины) кажутся нам красивыми, и один из неизменных результатов этих исследований сводился к тому, что нас привлекают изображения, подобные фракталам[87]. Возможно, это связано вот с чем: мы настолько окружены фракталами, что эти изображения кажутся нам более знакомыми, чем фигуры более традиционной геометрии. Удивительно, что психологам понадобилось столько времени на открытие этого факта — ведь фракталы буквально на каждом шагу!
Изображения фрактального типа — подобные упомянутому выше «треугольнику Серпинского» — мозаике VII века — существуют в искусстве издавна. Можно еще упомянуть «пламенеющие» арки и ажурные переплетения готической архитектуры, в которых, как и во многих произведениях современной живописи, в некоторой мере проявляется самоподобие. Однако за годы, прошедшие с тех пор, как программы для генерирования фракталов стали широко доступны, появился целый новый жанр изобразительного искусства, в котором фракталы используются осознанно. На илл. 20 изображена «оболочка Мандельброта» (Mandelbulb), созданная Дэниелом Уайтом и Полом Ниландером на основе трехмерного варианта множества Мандельброта.

Илл. 20. Оболочка Мандельброта
(Авторы изображения — Дэниел Уайт и Пол Ниландер)
Фракталы активно используются современными художниками, работающими в области компьютерной графики. Каждый холм и каждое облако в вашей любимой видеоигре построены алгоритмом генерирования фракталов, создающим реалистичные изображения. Самоподобие встречается даже в литературе: последний, связывающий, сонет (магистрал) в классическом венке состоит из первых стихов предыдущих четырнадцати сонетов. В музыке существует фуга, в которой самоподобие выражается в повторяющемся возникновении одной и той же темы. В ней же есть и масштабная инвариантность, проявляющаяся в увеличении и уменьшении, когда тема воспроизводится с большей (увеличенной) или с меньшей (уменьшенной) длительностью нот, в сжатии (стретто), когда голос, имитирующий тему, вступает еще до того, как завершился предыдущий, и в инверсии, когда тема повторяется в зеркальном отражении.
Самоподобие может приносить огромную пользу инженерам, потому что одна и та же конструкция может быть использована для изготовления механизма, выполняющего некую функцию на всех возможных масштабах. Однако тут сразу же возникают трудности, например, в связи с тем, что при увеличении размеров абсолютно одинаковых трехмерных объектов отношение их объема к площади поверхности не остается неизменным. Это может вызвать нарушения структурной или термодинамической устойчивости. С другой стороны, природа ничего не конструирует. Она просто лепит наугад, и выживает то, что выживает.
Если бы мы открыли закон, из которого следовало бы, что все на свете стремится к достижению максимальной масштабной инвариантности, это было бы большим шагом к пониманию того, как в природном мире возникают структуры невероятной сложности. Из этого вытекало бы, что вещи становятся масштабно-инвариантными не из-за некоего конкретного конструктивного принципа, определенного именно их собственной историей, но в соответствии со всеобщим законом. Если бы такой, ранее не известный, всеобщий руководящий принцип был найден, честь его открытия можно было бы приписать Мандельброту. Но если такой принцип и существует, мы знаем очень мало о механизме его работы и еще менее способны определить область его применимости.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ