Можно ли обыграть банк? Вероятность повторяющихся событий

We use cookies. Read the Privacy and Cookie Policy

Как мы увидели из предыдущего раздела, математическое ожидание помогает понять, является азартная игра равновесной или нет. Если игра равновесная, то после большого числа ходов ожидается, что мы не получим ни выигрыша, ни проигрыша. В противном случае мы можем рассчитать средний ожидаемый выигрыш или проигрыш. Несмотря на это, существовали и до сих пор существуют игроки, которым после множества ставок в игре с нулевым или отрицательным математическим ожиданием удается выигрывать. Рассмотрим математические инструменты, которые позволяют проанализировать повторяющиеся ходы (ставки) в азартной игре. Целью нашего анализа будет определить вероятность того, что мы сможем «превзойти ожидания».

Начнем с анализа игры в рулетку с 37 секторами (числа от 1 до 36 и 0). Какова вероятность того, что в 10 играх три раза выпадет зеро?

Вероятность выпадения трех зеро подряд в определенный момент игры равна (1/37)3 • (36/37)7 = 0,00016. Общая вероятность равна этому результату, умноженному на число позиций, которое может занимать последовательность из трех нулей: Сю з = 120. Иными словами,

p(3 нуля в 10 играх) = 120 • 0,00016 = 0,0192,

что приблизительно соответствует 1 шансу из 50. Этот пример можно обобщить, получив важный для анализа азартных игр результат. Если в азартной игре или в произвольном эксперименте совершено n ставок или n независимых друг от друга испытаний и нам известна вероятность одиночного события (успешного исхода испытания), то

p(r из n испытаний завершатся успешно) = Сn,r • pr • q(n-r), где q = 1-p, r?n.

Распределение количества «успешных» исходов от 1 до n называется биномиальным распределением. Для применения этой формулы необходимо, чтобы испытания были независимыми и чтобы вероятность успешного исхода отдельного события не менялась.

Используем биномиальное распределение, чтобы найти вероятность того, что при n бросках монеты r раз выпадет решка, r = 1, 2, ...,n при n = 8. В этом случае p(выпадения решки) = 1/2, следовательно, q = 1/2, откуда получим pr * q8-r = (1/2)r • (1/2)8-r = (1/2)8 = 1/256. Умножив это значение на значения сочетаний (C8,r) для разных значений r, получим:

Симметричное распределение, которое можно увидеть из таблицы, — следствие того, что вероятность выпадания решки при одиночном броске равна 1/2. Читатель наверняка уже заметил, что последовательность чисел (1, 8, 28, 56, 50, 56, 28, 8, 1) из таблицы выше, сумма которых равна 256 (28), совпадает с одним из рядов треугольника Паскаля. Следовательно, биномиальное распределение связано с биномиальными коэффициентами, которые в данном конкретном случае равны коэффициентам в биноме (а + b)8.