Пример 3

We use cookies. Read the Privacy and Cookie Policy

Усложним ситуацию еще больше, чтобы сделать ее более реальной. По результатам выборов 81 кресло в парламенте было распределено между пятью партиями следующим образом: А = 33, Б = 24, В = 15, Г = 6, Д = 3. Ни одна из партий не имеет абсолютного большинства (41 кресло), и для формирования правительства необходимо образовать коалицию. Эта коалиция займется распределением бюджетов и установит нужные обязанности. Партии имеют схожую идеологию, и предполагается, что мера ответственности определяется подконтрольным бюджетом. Кроме того, предполагается, что никто не будет нарушать процедуру голосования.

Из всех возможных альянсов (1 из пяти партий, 5 из четырех, 10 из трех, 10 из двух и 5 из одной) нам важны лишь 16 (они будут иметь минимум 41 кресло в парламенте). Так как ни одна партия не имеет большинства, цена игры для каждой партии равна 0, так как ни одна из партий не должна обязательно входить в состав коалиции, которая сформирует новое правительство.

ЛЛОЙД СТАУЭЛЛ ШЕПЛИ (РОД. 1923)

Этот американский математик и экономист внес фундаментальный вклад в теорию игр. Он изучал математику в Гарвардском университете, откуда выпустился в 1948 году после службы в армии и участия во Второй мировой войне в звании сержанта. Затем он в течение года работал в корпорации RAND и в 1953 году получил степень доктора в Принстонском университете, где в то время работали создатели теории игр. Затем он вернулся в RAND, где проработал до 1981 года, после чего занял должность профессора в Калифорнийском университете (UCLA). Уже в своей докторской диссертации он ввел некоторые значимые понятия теории игр, например вектор Шепли. На протяжении всей своей долгой научной деятельности он публиковал и продолжает публиковать исследования по этой тематике. Является членом Национальной академии наук США с 1979 года. Лауреат множества премий, среди которых премия фон Неймана (1981).

Для подобных ситуаций экономист и математик Ллойд Шепли предложил распределение, пропорциональное числу возможных выигрышных коалиций, в которых данный игрок имеет определяющую роль (без него альянс не наберет нужного числа голосов). Платеж, получаемый каждым игроком, называется значением Шепли. Игрок не играет определяющую роль в коалиции, если его участие не обязательно для победы этой коалиции.

В нашем примере в альянсе, образованном всеми пятью партиями, ни одна из них не играет определяющую роль. Например, в коалиции БВГД партии Б и В играют определяющую роль: без их участия коалиция не наберет большинство (без партии Б коалиция будет иметь лишь 24 места, без партии В — 33). Напротив, Г и Д не играют определяющей роли: если одна из этих партий покинет коалицию, та сохранит большинство (без партии Г коалиции будет принадлежать 42 кресла, без партии Д — 45). Число коалиций, в которых определяющую роль играют те или иные партии, представлено в таблице ниже

Теперь мы можем распределить бюджет согласно модели Шепли. Допустим, что коалиция образована всеми партиями, и в их распоряжении находится бюджет в размере 2,6 млрд евро. Распределение по модели Шепли (в миллионах евро) выглядит так:

А = 1000,

Б = 600,

В = 600,

Г = 200,

Д = 200.

В любом другом альянсе каждая партия-участник получит часть общего бюджета согласно этим же правилам, и полученная сумма никогда не будет меньше полученной в составе этой коалиции. Это не единственное стабильное распределение, но для любой коалиции распределение, выполненное подобным образом, будет наиболее стабильным, и не будет способа, при котором суммы платежей для участников коалиции будут больше.

Метод фон Неймана, равно как и метод Шепли, показывает следующее: с одной стороны, решением является не единственное распределение, а множество распределений; с другой стороны, мы можем найти множество характеристик, которые помогут понять, является ли данное распределение частью «решения» или нет.

По прочтении двух последних глав читатель заметил, что чем сложнее анализируемые ситуации (и в то же время чем они ближе к реальности), тем менее категоричны математические методы, используемые при решении. Это не означает, что какое-то решение будет более корректным, чем другое. Это значит, что реальные ситуации, в которых сочетается сотрудничество и соперничество, обладают индивидуальными отличительными свойствами. Поэтому в применяемых математических методах нужно учитывать, что их корректность будет зависеть от данных конкретных свойств.