3. Рационализация

Какие стратегические варианты выбора в играх можно обосновать, исходя исключительно из рациональности? В матрице игры на рис. 5.5 мы можем объяснить любую пару стратегий, по одной на каждого игрока, посредством применения той же логики, что и в разделе 2.В. Иными словами, можем обосновать любую из девяти возможных комбинаций. Следовательно, рациональность в чистом виде не позволяет нам сократить совокупность вероятных исходов игры или вообще спрогнозировать их. Присуще ли это всем играм? Нет. Например, если стратегия доминируемая, ее можно исключить из рассмотрения на основе одной только рациональности. А когда игроки осознают, что их соперники, будучи рациональными, не выберут доминируемые стратегии, исходя из такого общего знания можно выполнить итеративное исключение доминируемых стратегий. Лучшее ли это из доступных действий? Нет. Можно продолжить дальнейшее исключение стратегий, воспользовавшись несколько более сильным свойством, чем доминируемость в чистых стратегиях. Оно определяет стратегии, которые не могут быть наилучшим ответом. Стратегии, оставшиеся после такой процедуры исключения, называются рационализируемыми, а сама концепция — рационализацией.

Зачем вводить эту дополнительную концепцию, и что она нам дает? Что касается первого вопроса, полезно знать, насколько можно сузить совокупность возможных исходов игры на основании одной лишь рациональности игроков, не прибегая к правильности ожиданий относительно фактического выбора игрока. Иногда можно определить, что игрок не выберет то или иное действие или действия, даже если нельзя вычислить, какое именно действие он все же выберет. Ответ на второй вопрос зависит от контекста. Порой рационализация вообще не позволяет сократить совокупность исходов игры. Именно так было в примере три на три, представленном на рис. 5.5. Подчас рационализация позволяет это сделать только до определенной степени, но не до равновесия Нэша, если оно в игре всего одно, или не до совокупности равновесий Нэша, если их в игре несколько. Примером такой ситуации может служить расширенный до матрицы четыре на четыре предыдущий пример, который рассматривается в разделе 3.А ниже. Иногда сокращение совокупности возможных исходов игры приводит к определению единственного равновесия Нэша, причем в подобных случаях мы имеем его более веское обоснование, опирающееся исключительно на рациональность, без предположений о правильности ожиданий. Ниже в разделе 3.Б представлен пример игры с конкуренцией по количеству, в котором аргументация на основе концепции рационализации позволяет найти в ней единственное равновесие Нэша.

А. Применение концепции рационализации

Рассмотрим игру на рис. 5.6, аналогичную той, что приведена на рис. 5.5, но с дополнительной стратегией на каждого игрока[65]. Как отмечалось выше, девять комбинаций стратегий, в которые входит одна из первых трех стратегий для каждого из игроков, можно обосновать посредством цепочки убеждений игроков в отношении убеждений друг друга. Это верно и в увеличенной матрице. Но подходит ли такой способ для стратегий R4 и C4?

Рис. 5.6. Рационализируемые стратегии

Может ли Строка исходить из убеждения, что Столбец выберет стратегию C4? В его основе должны лежать убеждения Столбца в отношении выбора Строки. Могут ли они сделать стратегию С4 наилучшим ответом Столбца? Нет. Если Столбец полагает, что Строка сыграет R2, его наилучший ответ С2. Если Столбец считает, что Строка предпочтет R3, то его наилучший ответ С3. А если Столбец убежден, что Строка выберет R4, тогда его наилучший ответ либо С1, либо С3. Следовательно, С4 не может быть наилучшим ответом Столбца[66]. Это означает, что Строка, зная о рациональности Столбца, ни в коем случае не припишет ему выбор стратегии С4. Стало быть, Строка не должна исходить из убеждения, что Столбец сыграет С4.

Обратите внимание, что хотя стратегия С4 не может быть наилучшим ответом, она не является доминируемой по отношению к стратегиям С1, С2 и С3. Для Столбца она предпочтительнее стратегии С1 против стратегии Строки R3, предпочтительнее стратегии С2 против стратегии Строки R4 и предпочтительнее стратегии С3 против стратегии Строки R1. Если стратегия все же доминируемая, она тоже не может быть наилучшим ответом. Таким образом, «стратегия, которая не может быть наилучшим ответом», — более общая концепция, чем «доминируемая стратегия». Исключение таких стратегий возможно даже тогда, когда исключение доминируемых стратегий невозможно. Следовательно, исключение стратегий, которые не могут быть наилучшим ответом, способно сузить совокупность вероятных исходов игры в большей степени, чем исключение доминируемых стратегий[67].

Исключение стратегий, которые не могут быть наилучшим ответом, также можно выполнять в итеративном режиме. Поскольку рациональный игрок Строка не может исходить из убеждения, что рациональный игрок Столбец выберет стратегию С4, рациональный игрок Столбец должен это предвидеть. Учитывая, что R4 — наилучший ответ Строки только на стратегию С4, Столбец не должен думать, что Строка сыграет R4. Следовательно, R4 и С4 не могут входить в набор рационализируемых стратегий. Концепция рационализации действительно позволяет сократить совокупность возможных исходов данной игры.

Если в игре есть равновесие Нэша, оно будет рационализируемым и его можно подтвердить посредством простой системы убеждений, состоящей из одного цикла, как в представленном выше разделе 2.В. Но в более общем плане, даже если в игре нет равновесия Нэша, она может иметь рационализируемые исходы. Возьмем в качестве примера игру два на два, полученную из игры на рис. 5.5 или рис. 5.6, в которой оставлены только стратегии R1 и R3 для Строки и С1 и С3 для Столбца. Легко увидеть, что в этой игре нет равновесия Нэша в чистых стратегиях. Однако все четыре ее исхода рационализируемы посредством такой же цепочки убеждений, как выстроенная выше и охватывающая эти стратегии.

Таким образом, концепция рационализации представляет собой возможный способ решения игр с отсутствием равновесия Нэша. Что еще более важно, эта концепция подсказывает нам, как сократить совокупность вероятных исходов игры исключительно на основании рациональности.

Б. Рационализация может привести к равновесию Нэша

В некоторых играх итеративное исключение стратегий, которые не могут быть наилучшим ответом, может сократить всю совокупность возможных исходов до равновесия Нэша. Обратите внимание, что мы сказали «может», а не «должно». Но если подобное все же происходит, это очень полезно, поскольку позволяет подкрепить доводы в пользу равновесия Нэша путем утверждения, что оно следует исключительно из рациональных мнений игроков о рассуждениях друг друга. Интересно, что один класс игр, решаемых таким способом, играет важную роль в экономике. К нему относится конкуренция между компаниями при определении количества производимой продукции, когда они знают, что от ее общего объема на рынке зависит цена.

Мы проиллюстрируем игру такого типа в контексте небольшого прибрежного городка. В нем две некие рыбацкие лодки каждый вечер уходят в море, а утром возвращаются с уловом и выставляют его на рынок. Игра разыгрывается во времена, когда еще не было современного холодильного оборудования, поэтому вся рыба должна быть продана и съедена в тот же день. В океане неподалеку от города полно рыбы, поэтому владелец каждой лодки может решать, сколько рыбы поймать за ночь. Но каждый из них также знает, что избыток рыбы на рынке приведет к снижению цен и прибыли.

Предположим, что если одна лодка выставит на рынок R бочек рыбы, а другая S бочек, то цена P (в дукатах за бочку) будет равна P = 60 — (R + S). Допустим также, что две лодки и их команды несколько отличаются по эффективности рыбной ловли: затраты первой лодки на ловлю рыбы составляют 30 дукатов на одну бочку, тогда как второй — 36 дукатов на бочку.

Теперь мы можем записать формулы определения прибыли двух владельцев лодок U и V с учетом их стратегий R и S.

U = [(60 — R — S) — 30]R = (30 — S)R — R2,

V = [(60 — R — S) — 36]S = (24 — R)S — S2.

На основании этих формул выигрышей можно построить кривые наилучших ответов и найти равновесие Нэша. Как и в примере игры с ценовой конкуренцией из раздела 1, выигрыш каждого игрока представляет собой квадратичную функцию его собственной стратегии при условии неизменности стратегии другого игрока. Следовательно, в данном случае можно применить математические методы, изложенные в разделе 1 данной главы и в приложении к ней.

Наилучший ответ первой лодки R должен максимизировать значение U для каждого заданного значения S другой лодки. При использовании дифференциального исчисления это означает, что мы должны продифференцировать U по R при фиксированном значении S и приравнять производную к нулю, что дает следующее уравнение:

(30 — S) — 2R = 0; R = 15 — S / 2.

Подход без дифференциального исчисления использует результат, согласно которому значение R, максимизирующее значение U, равно R = B / (2C), где B = 30 — S, а C = 1. Это дает R = (30 — S) / 2, или R = 15 — S / 2.

Аналогичным образом уравнение наилучшего ответа второй лодки можно найти, выбрав значение S, максимизирующее значение V при каждом фиксированном значении R, что дает следующее значение:

Равновесие Нэша можно найти посредством совместного решения двух уравнений наилучших ответов для R и S, что не так уж трудно сделать[68], поэтому мы просто приведем результаты. Количество: R = 12, S = 6; цена: P = 42; прибыль: U = 144, V = 36.

На рис. 5.7 представлены графики наилучших ответов двух рыбаков (обозначенные как BR1 и BR2 с указанием соответствующих уравнений), а также равновесие Нэша (обозначенное как N с указанием координат) на пересечении двух линий. Кроме того, на рис. 5.7 также показано, как сократить совокупность убеждений игроков в отношении выбора друг друга посредством итеративного исключения стратегий, которые не могут быть наилучшим ответом.

Рис. 5.7. Поиск равновесия Нэша с помощью рационализации

Какие значения S, по рациональному убеждению владельца первой лодки, выберет владелец второй лодки? Это зависит от того, какой улов, по мнению владельца второй лодки, получит владелец первой лодки. Но каким бы ни был этот улов, наилучшие ответы владельца второй лодки находятся в диапазоне от 0 до 12 бочек. Следовательно, владелец первой лодки не может рационально считать, что владелец второй лодки выберет что-то другое: все отрицательные варианты выбора (что очевидно) и все значения S, превышающие 12 бочек (что менее очевидно), исключаются. Точно так же владелец второй лодки не может рационально считать, что владелец первой лодки выловит рыбы меньше 0 или больше 15 бочек.

Теперь перейдем ко второму циклу рассуждений. Когда владелец первой лодки ограничит варианты выбора значений S владельцем второй лодки диапазоном от 0 до 12 бочек, его собственные варианты выбора значений R будут ограничены диапазоном наилучших ответов на диапазон значений S. Наилучший ответ на S = 0 — это R = 15, а наилучший ответ на S = 12 — это R = 15–12 / 2 = 9. Поскольку график BR1 наклонен вниз, все значения R, допустимые на данном этапе рассуждений, лежат в диапазоне от 9 до 15. Точно так же выбор владельцем второй лодки значений S ограничен диапазоном наилучших ответов на R от 0 до 15, точнее говоря, значениями от S = 12 до S = 12–15 / 2 = 4,5. Эти ограниченные диапазоны значений показаны на рис. 5.7 на осях координат.

Третий цикл рассуждений сужает диапазоны значений еще больше. Поскольку значение R должно составлять минимум 9, а график BR2 имеет отрицательный наклон, S может быть не более чем наилучшим ответом на 9; в частности, S = 12 — 9 / 2 = 7,5. В ходе второго цикла рассуждений уже было показано, что значение S должно быть как минимум 4,5. Следовательно, теперь значения S ограничены диапазоном от 4,5 до 7,5. Кроме того, так как значение S должно быть не менее 4,5, значение R может составлять не более 15 — 4,5 / 2 = 12,75. Во втором цикле рассуждений мы узнали, что значение R должно равняться минимум 9, а значит, теперь оно ограничено диапазоном от 9 до 12,75.

Эту последовательность циклов рассуждений можно продолжать сколько угодно, но уже сейчас очевидно, что последовательное сужение диапазонов значений двух показателей сводит эти значения к равновесию Нэша, R = 12 и S = 6. Таким образом, равновесие Нэша — единственный исход игры, остающийся после итеративного исключения стратегий, которые не могут быть наилучшим ответом[69]. Мы знаем, что в общем аргументация на основе концепции рационализации не обязательно должна сводить исходы игры к равновесиям Нэша, а значит, это особое свойство данного примера. В действительности этот процесс применим к целому классу игр и позволяет решить любую игру, имеющую единственное равновесие Нэша на пересечении нисходящих кривых наилучших ответов[70].

Эту аргументацию следует отличать от прежней, основанной на последовательности наилучших ответов. Тогда ход рассуждений выглядел следующим образом. Начнем с любой стратегии одного из игроков, скажем R = 18. В этом случае наилучший ответ другого игрока S = 12–18/2 = 3. Наилучший ответ R на S = 3 — это R = 15 — 3/2 = 13,5. В свою очередь, наилучший ответ S на R =13,5 — 12–13,5/2 = 5,25. Тогда наилучший ответ R против этого значения S составляет R = 15 — 5,25/2 = 12,375. И так далее.

Цепочка рассуждений в прежней аргументации также сходится к равновесию Нэша, но в ней есть один недостаток. Речь идет об игре с одновременными ходами, разыгрываемой только раз. В такой ситуации невозможно, чтобы один игрок отреагировал на выбор другого игрока, после чего первый игрок снова предпринял ответное действие и т. д. Если бы такая динамика игры допускалась, разве игроки не предвидели бы реакцию друг друга и не предприняли бы совсем другие действия?

Аргументация на основе концепции рационализации представляет собой нечто иное. В ней четко учитывается тот факт, что игра проходит только раз и сводится к одновременному выполнению ходов. Все размышления относительно цепочки наилучших ответов выполняются с опережением событий, а все последующие циклы рассуждений и ответных действий носят сугубо концептуальный характер. Игроки реагируют не на фактический выбор, а лишь на расчетные значения того выбора, который так и не будет сделан. Весь процесс протекает исключительно в головах игроков.