5. Теорема о медианном избирателе

Во всех предыдущих разделах основное внимание уделялось поведению (стратегическому или иному) избирателей на выборах с несколькими альтернативами. Тем не менее стратегический анализ применим и к поведению кандидатов, участвующих в выборах. Например, учитывая особенности распределения избирателей и их предпочтений, кандидаты могут определить оптимальные стратегии построения своих политических платформ. Когда в выборах участвуют всего два кандидата, когда избиратели распределены по политическому спектру «разумным» способом и когда у каждого избирателя «разумно» непротиворечивые предпочтения (предпочтения с одним максимумом), теорема о медианном избирателе гласит, что оба кандидата будут позиционировать себя в политическом спектре там же, где и медианный избиратель. Медианный избиратель — это «средний» избиратель в этом распределении, точнее говоря, избиратель, который находится в 50-м перцентиле.

В данном случае полная игра состоит из двух этапов. На первом кандидаты выбирают свою позицию в политическом спектре. На втором избиратели выбирают одного из кандидатов. В общем плане игра на втором этапе открыта для всех возможных стратегических искажений предпочтений, обсуждавшихся ранее. В связи с этим в целях нашего анализа мы сократили количество кандидатов до двух во избежание появления такого поведения в равновесии. Только при наличии двух кандидатов голосование избирателей будет в точности соответствовать их предпочтениям, а решение кандидатов о позиции в политическом спектре, принимаемое на первом этапе, — единственным поистине интересным аспектом большой игры. Именно на этом этапе теорема о медианном избирателе определяет поведение, соответствующее равновесию Нэша.

А. Дискретный политический спектр

Сначала рассмотрим совокупность из 90 миллионов избирателей, каждый из которых имеет предпочтительную позицию в политическом спектре, состоящем из пяти позиций: крайняя левая (КЛ), левая (Л), центральная (Ц), правая (П) и крайняя правая (КП). Допустим, избиратели распределены симметрично вокруг центра политического спектра. Дискретное распределение их местоположения показано на гистограмме, или столбчатой диаграмме, представленной на рис. 15.7. Высота каждого столбика отображает количество избирателей, соответствующих этой позиции. В данном примере мы исходим из предположения, что из 90 миллионов избирателей 40 миллионов отдают предпочтение левой позиции, 20 миллионов — крайней правой и по 10 миллионов — крайней левой, центральной и правой.

Рис. 15.7. Дискретное распределение избирателей

Избиратели будут голосовать за кандидата, который публично позиционирует себя как максимально разделяющего их собственную позицию в политическом спектре во время выборов. Если оба кандидата политически равноудалены от группы избирателей-единомышленников, каждый избиратель подбрасывает монету, чтобы решить, какого кандидата выбрать. Этот процесс дает каждому кандидату половину избирателей в данной группе.

Теперь допустим, что в предстоящих президентских выборах участвуют два кандидата: бывшая первая леди (Клаудия) и бывшая потенциальная первая леди (Долорес), каждая из которых выдвинула свою кандидатуру на пост президента[275]. При конфигурации избирателей как на рис. 15.7 мы можем составить таблицу выигрышей для двух кандидатов, показывающую число голосов, на получение которых может рассчитывать каждый из них при всех возможных комбинациях вариантов выбора политической платформы. Эта таблица пять на пять представлена на рис. 15.8, где данные выражены в миллионах голосов. Каждому кандидату предстоит выбрать оптимальную стратегию положения в политическом спектре, чтобы максимизировать количество полученных голосов (а значит, и шансы на победу)[276].

Рис. 15.8. Таблица выигрышей в игре «позиционирование кандидатов»

Вот как распределены голоса. Когда оба кандидата выбирают одну и ту же позицию (пять ячеек по диагонали таблицы из верхнего левого в нижний правый угол), каждый получает ровно половину голосов. Поскольку все избиратели равноудалены от каждого кандидата, все они подбрасывают монету, чтобы решить, кого предпочесть; в итоге каждый кандидат получает 45 миллионов голосов. Когда два кандидата выбирают разные позиции, более левый кандидат получает все голоса избирателей, находящихся в его позиции или слева от нее, а более правый кандидат — все голоса избирателей, находящихся в его позиции или справа от нее. Кроме того, каждый кандидат получает голоса избирателей, расположенных в центральных позициях ближе к нему, чем к его сопернику, и оба делят поровну голоса избирателей, находящихся в центральной позиции на равном расстоянии от них. Таким образом, если Клаудия выберет позицию Л, тогда как Долорес позицию КП, Клаудия получит 40 миллионов голосов в позиции Л, 10 миллионов голосов в позиции КЛ и 10 миллионов голосов в позиции Ц (поскольку Ц ближе к Л, чем к КП). Долорес получит 20 миллионов голосов в позиции КП и 10 миллионов голосов в позиции П (поскольку П ближе к КП, чем к Л). Выигрыш составляет (60, 30). Аналогичные вычисления позволяют определить исходы в остальных ячейках таблицы.

Хотя таблица, представленная на рис. 15.8, достаточно большая, игра решается очень быстро. Начнем с уже знакомого вам поиска доминирующих или доминируемых стратегий двух игроков. И сразу же видим, что для Клаудии стратегия КЛ доминируема стратегией Л, а стратегия КП доминируема стратегией П. В случае Долорес стратегия КЛ также доминируема стратегией Л, а стратегия КП доминируема стратегией П. После исключения крайних стратегий для каждого кандидата стратегия П доминируема стратегией Ц. После исключения двух стратегий П стратегия Ц доминируема стратегией Л в случае каждого кандидата. В итоге в таблице остается одна ячейка — (Л, Л); это и есть равновесие Нэша.

Теперь следует отметить три важные характеристики равновесия в игре с позиционированием кандидатов. Во-первых, они оба располагаются в равновесии в одной и той же позиции. Это иллюстрирует принцип минимальной дифференциации — общий результат всех игр с двумя участниками, которые сводятся к соперничеству за местоположение, будь то выбор кандидатами в президенты политической платформы, или выбор уличными торговцами местоположения тележки для продажи хот-догов, или выбор характеристик продукта производителями электронных устройств[277]. Если людей, голосующих за вас или покупающих у вас продукцию, можно расположить в определенном порядке в определенном диапазоне предпочтений, для вас целесообразнее максимально походить на соперника. Это объясняет многообразие совокупности моделей поведения политических кандидатов и компаний. Кроме того, это поможет вам понять, почему на пересечении автомагистралей с интенсивным движением никогда не бывает только одна автозаправочная станция, или почему все марки четырехдверных седанов (или минивэнов, или внедорожников) выглядят одинаково, хотя каждый производитель утверждает, что постоянно обновляет их дизайн.

Во-вторых, что особенно важно, оба кандидата находятся в позиции медианного избирателя. В нашем примере, при общем количестве 90 миллионов избирателей, медианный избиратель — это избиратель под номером 45 миллионов от каждого конца. Числа в пределах одного местоположения могут быть выбраны произвольно, но местонахождение медианного избирателя определено однозначно; в нашем примере медианный избиратель расположен на шкале политического спектра в позиции Л, где и находятся оба кандидата. Это именно тот результат, который предсказывает теорема о медианном избирателе.

В-третьих, положение медианного избирателя не всегда совпадает с геометрическим центром политического спектра. Эти две позиции совпадают, если распределение избирателей симметрично, но медианный избиратель может располагаться слева от геометрического центра, если распределение смещено влево (как на рис. 15.7), и справа, если распределение смещено вправо. Это позволяет объяснить, почему все политические кандидаты штата Массачусетс, например, чаще бывают либералами, чем кандидаты на аналогичные должности в Техасе или Южной Каролине.

Теорему о медианном избирателе можно сформулировать по-разному. Одна версия просто гласит, что позиция медианного избирателя обеспечивает равновесное положение кандидатов в выборах с двумя кандидатами. Согласно другой версии, наиболее предпочитаемая медианным избирателем позиция будет победителем по Кондорсе; она победит любую другую позицию в парном сравнении. Например, если М — это медианная позиция, а Л — любая позиция слева от М, то М получит все голоса избирателей, отдающих наибольшее предпочтение позиции, находящейся в точке М или справа от нее, плюс некоторые голоса слева от М, но ближе к М, чем к Л. Таким образом, М получит более 50 % голосов. Эти две версии формулировки теоремы равнозначны, поскольку во время выборов с участием двух кандидатов оба кандидата, стремящиеся получить большинство голосов, займут позицию победителя по Кондорсе. Следовательно, эти варианты интерпретации теоремы идентичны. Кроме того, справедливость данного результата для конкретной совокупности избирателей обеспечивает требование данной теоремы (в любой ее форме) о «разумности» предпочтений каждого избирателя, как говорилось выше. Под разумными подразумеваются предпочтения с одним максимумом, как в случае Блэка, о котором шла речь в разделе 3.А и на рис. 15.4. У каждого избирателя есть единственная, наиболее предпочтительная позиция на шкале политического спектра, и полезность (или выигрыш) избирателя снижается при ее смещении в любую сторону[278]. В случае реальных президентских выборов в США эту теорему подтверждает склонность основных кандидатов давать избирателям весьма похожие обещания.

Б. Непрерывный политический спектр

Теорему медианного избирателя также можно доказать и для непрерывного распределения политических позиций. Вместо выбора из пяти, трех или любого другого конечного числа позиций непрерывное распределение подразумевает возможность выбора из бесконечного количества политических позиций. При этом они расположены на вещественной числовой оси в диапазоне значений от 0 до 1[279]. Избиратели, как и прежде, распределены по шкале политического спектра, но поскольку теперь их распределение стало непрерывным, а не дискретным, для иллюстрации их местоположения мы используем функцию распределения[280], а не гистограмму. На рис. 15.9 отображены две простые функции — функция равномерного распределения и функция (симметричного) нормального распределения[281]. Площадь под каждым графиком соответствует общему количеству имеющихся голосов; в любой заданной точке в интервале от 0 до 1, такой как точка x на рис. 15.9a, число голосов, соответствующих этой точке, равно площади под функцией распределения в интервале от 0 до x. Очевидно, что медианный избиратель в каждом из этих случаев распределения находится в центре политического спектра, то есть в позиции 0,5.

Рис. 15.9. Непрерывное распределение избирателей

В случае непрерывного распределения построить таблицу выигрышей двух кандидатов невозможно; такие таблицы обязательно должны иметь конечное число размерностей, поэтому они не могут вместить бесконечное количество возможных стратегий игроков. Тем не менее мы можем решить эту игру, применив ту же стратегическую логику, что и в случае дискретного (конечного) распределения в разделе 5.А.

Рассмотрим варианты, которыми располагают Клаудия и Долорес в процессе анализа возможных политических позиций, которые они могут занять. Каждая из них знает, что ее задача — найти стратегию, входящую в равновесие Нэша, иначе говоря, свой наилучший ответ на равновесную стратегию соперницы. В этой игре несложно определить стратегии, которые представляют собой наилучшие ответы, хотя всю совокупность таких стратегий описать невозможно.

Предположим, Долорес выбирает случайную позицию на шкале политического спектра, скажем, позицию х на рис. 15.9a. Затем Клаудия вычисляет, как разделятся голоса во всех возможных позициях, которые она может выбрать. Если она выберет позицию слева от х, то получит все голоса слева от нее и половину голосов, расположенных между ее позицией и позицией Долорес. Если Клаудия предпочтет позицию справа от х, то получит все голоса справа от нее и половину голосов, расположенных между ее позицией и позицией х. И наконец, если Клаудия также выберет позицию х, то они с Долорес разделят голоса поровну. По сути, эти три возможности отображают все варианты выбора местоположения, имеющиеся у Клаудии при условии, что Долорес выберет позицию х.

Но какая из вышеупомянутых ответных стратегий Клаудии лучшая? Ответ на этот вопрос зависит от местоположения х по отношению к медианному избирателю. Если х находится справа от медианной позиции, Клаудия знает, что ее наилучший ответ — максимизировать количество набранных голосов, что она может сделать, выбрав позицию, смещенную влево от позиции x на бесконечно малую величину[282]. В таком случае Клаудия, по сути, получит все голоса в интервале от 0 до x, а Долорес — голоса в интервале от х до 1. Когда x находится справа от медианной позиции, как на рис. 15.9a, количество избирателей, представленное площадью под функцией распределения в интервале от 0 до x, по определению больше числа избирателей в интервале от x до 1, а значит, Клаудия выиграет выборы. Аналогично, если x находится слева от медианной позиции, наилучший ответ Клаудии состоит в выборе позиции, смещенной вправо от позиции x на бесконечно малую величину; тогда она получит все голоса в интервале от x до 1. Когда позиция x совпадает с медианной точкой, Клаудии лучше всего также выбрать позицию x.

Стратегии наилучших ответов Долорес строятся точно так же и с учетом позиции соперницы аналогичны стратегиям, описанным для Клаудии. На графике две линии наилучших ответов расположены над и под линией, которая проходит под углом 45 градусов через позицию медианного избирателя, а в этой точке эти линии совпадают с линией под углом 45 градусов. (Наилучший ответ Клаудии на расположение Долорес в позиции медианного избирателя — расположиться точно в том же месте; то же справедливо в обратном порядке в случае Долорес.) Вне позиции медианного избирателя графики наилучших ответов находятся по разные стороны от линии под углом 45 градусов.

Теперь у нас есть полное описание стратегий наилучших ответов обоих кандидатов. Равновесие Нэша возникает в точке пересечения линий наилучших ответов; это пересечение находится в позиции медианного избирателя. Вы можете интуитивно проанализировать эту ситуацию, выбрав любое исходное положение для одного из кандидатов и перебирая стратегии наилучших ответов до тех пор, пока каждый кандидат не окажется в позиции, отображающей наилучший ответ на позицию другого кандидата. Если бы на рис. 15.9a Долорес анализировала возможность выбора позиции x, Клаудия предпочла бы позицию непосредственно слева от x, но тогда Долорес захотела бы расположиться сразу же слева от этой позиции и т. д. Только тогда, когда кандидаты располагаются именно в медианной точке распределения (будь то равномерного, нормального или любого другого), их решения будут наилучшим ответом на действия друг друга. Опять же, мы видим, что равновесие Нэша сводится к размещению обоих кандидатов в позиции медианного избирателя.

Для того чтобы удовлетворить интерес истинного математика, доказательство версии теоремы о медианном избирателе с непрерывным распределением потребует более сложных математических выкладок. Нам же приведенного описания вполне достаточно, чтобы убедить вас в обоснованности теоремы в случае как дискретного, так и непрерывного политического спектра. Самое важное ограничение теоремы о медианном избирателе состоит в том, что она применима только при наличии одного вопроса, то есть при одномерном спектре политических различий. Если таких измерений два или более (например, консервативная или либеральная позиция по социальным вопросам не совпадает с консервативной или либеральной позицией по экономическим вопросам), то совокупность избирателей распределена в двумерном «пространстве вопросов» и теорема о медианном избирателе не выполняется. У каждого отдельно взятого избирателя могут быть предпочтения с одним максимумом в том смысле, что у него есть наиболее предпочтительная точка, а его выигрыш во всех направлениях от нее уменьшается подобно тому, как уменьшается высота горы по мере отдаления от ее вершины. Однако мы не сможем идентифицировать медианного избирателя в ситуации с двумя измерениями с равным количеством избирателей, наиболее предпочтительная позиция которых находится по обе стороны позиции медианного избирателя. В случае двух измерений нет однозначного восприятия стороны, а количество избирателей по обе стороны может меняться в зависимости от того, как именно мы определяем «сторону».