6. Игра «ястреб — голубь»

Игра «ястреб — голубь» стала первой изученной биологами в процессе разработки теории эволюционных игр. В ней есть полезные параллели с дилеммой заключенных и игрой в труса, поэтому мы описываем ее здесь, чтобы закрепить и углубить ваше понимание соответствующих концепций.

В игре участвуют не птицы этих двух видов, а двое животных одного и того же вида, а «ястреб» и «голубь» — просто названия их стратегий. Суть игры — соперничество за ресурс. Стратегия «ястреб» агрессивна и направлена на получение всего ресурса стоимостью V. Стратегия «голубь» компромиссна и сводится к готовности разделить ресурс и избежать драки. Когда два игрока типа «ястреб» противостоят друг другу, они вступают в драку. Каждое животное с одинаковой вероятностью (равной 1/2) может либо победить и получить V, либо проиграть, получить травмы и — C. Следовательно, ожидаемый выигрыш каждого игрока равен (V–C)/2. Когда в игру вступают два «голубя», они без драки делят между собой ресурс, поэтому выигрыш каждого из них составляет V/2. Когда игрок типа «ястреб» вступает в противостояние с игроком типа «голубь», последний спасается бегством и получает выигрыш 0, тогда как первый — выигрыш V. На рис. 12.13 представлена таблица выигрышей в этой игре.

Рис. 12.13. Таблица выигрышей для игры «ястреб — голубь»

Анализ этой игры аналогичен анализу дилеммы заключенных и игры в труса, только в ней числовые выигрыши заменены алгебраическими символами. Мы сопоставим равновесия в этой игре, когда игроки рационально выбирают стратегию «ястреб» или «голубь», после чего сравним исходы игры, когда игроки действуют автоматически, а успех вознаграждается более быстрым воспроизводством.

А. Рациональный стратегический выбор и равновесие

1. Если V > C, то это дилемма заключенных, в которой стратегия «ястреб» соответствует стратегии «отказ от сотрудничества», а стратегия «голубь» — стратегии «сотрудничать». Стратегия «ястреб» — доминирующая для каждого игрока, но комбинация стратегий «голубь»/«голубь» — более благоприятный исход для обоих игроков.

2. Если V < C, тогда это игра в труса. Теперь (V–C)/2 < 0, а значит, «ястреб» больше не доминирующая стратегия. В игре два равновесия Нэша в чистых стратегиях: «ястреб»/«голубь» и «голубь»/«ястреб». В игре также есть равновесие в смешанных стратегиях, при котором вероятность p выбора игроком Б стратегии «ястреб» имеет такое значение, которое поддерживает безразличие игрока А в отношении выбора стратегий:

Б. Эволюционная устойчивость при V > C

Начнем с популяции, состоящей преимущественно из «ястребов», и проверим, могут ли ее захватить мутанты типа «голубь». Придерживаясь условных обозначений для подобных игр, мы могли бы выразить долю мутантного фенотипа в популяции как m (от слова «mutant»), но для ясности будем использовать для мутанта типа «голубь» обозначение d (от «dove»). Таким образом, доля «ястребов» в популяции составляет (1 — d). Тогда в противостоянии со случайно выбранным соперником «ястреб» будет встречаться с «голубем» в d случаях и получит V в каждом из них, а также встретится с другим «ястребом» в (1 — d) случаях и получит (V–C)/2 в каждом. Следовательно, уровень приспособленности «ястреба» равен [dV + (1 — d)(V–C)/2]. Аналогичным образом уровень приспособленности одного из мутантов типа «голубь» составляет [d(V/2) + (1 — d)?0]. Поскольку V > C, отсюда следует, что (V–C)/2 > 0. Кроме того, V > 0 подразумевает, что V > V/2. В таком случае при любом значении d от 0 до 1 имеем

Стало быть, у «ястреба» более высокий уровень приспособленности, поэтому мутанты типа «голубь» не могут захватить популяцию. Стратегия «ястреб» эволюционно устойчива, а популяция мономорфна (все «ястребы»).

То же самое верно и для любой доли «голубей» в популяции при всех значениях d. Следовательно, какой бы ни была исходная комбинация типов, доля «ястребов» будет расти и они будут доминировать. Кроме того, если исходная популяция состоит только из «голубей», мутанты типа «ястреб» могут ее захватить. Таким образом, эта динамика говорит о том, что «ястреб» — единственная эволюционно устойчивая стратегия. Данный алгебраический анализ подтверждает и обобщает сделанный ранее вывод в числовом примере дилеммы заключенных в контексте игры в ценообразование (см. рис. 12.1).

В. Эволюционная устойчивость при V < C

Если исходная популяция преимущественно «ястребы» с небольшой долей d мутантов типа «голубь», то у каждого из них такая же функция уровня приспособленности, как и функции, выведенные в разделе 6.Б. Однако когда V < C, (V–C)/2 < 0. Мы по-прежнему имеем V > 0, а значит, V > V/2. Но поскольку значение d очень маленькое, сравнение этих членов с (1 — d) играет гораздо более важную роль, чем сравнение с d, поэтому

Следовательно, уровень приспособленности мутантов типа «голубь» выше уровня приспособленности доминирующего типа «ястреб», поэтому мутанты типа «голубь» могут захватить популяцию.

Однако если исходная популяция почти полностью состоит из «голубей», мы должны проанализировать, может ли небольшая доля h мутантов типа «ястреб» захватить ее. (Обратите внимание, что, поскольку мутант теперь относится к типу «ястреб», мы использовали символ h (hawk) для обозначения доли мутантов-захватчиков.) Уровень приспособленности мутантов типа «ястреб» [h(V–C)/2 + (1 — h)V] сопоставим c [h ? 0 + (1 — h)(V/2)] в случае мутантов типа «голубь». И снова V < C подразумевает, что (V–C)/2 < 0, а V > 0 подразумевает, что V > V/2. Но когда значение h небольшое, получаем

Это неравенство показывает, что уровень приспособленности «ястребов» выше, поэтому они захватят популяцию «голубей». Таким образом, мутанты каждого типа могут захватить популяцию другого типа. Поэтому она не может быть мономорфной и ни один чистый фенотип не может быть эволюционно устойчивой стратегией. Алгебраические расчеты снова подтверждают сделанный ранее вывод в числовом примере дилеммы заключенных в контексте игры в труса (см. рис. 12.6 и рис. 12.7).

А что происходит в популяции, когда V < C? Существуют два сценария. В первом каждый игрок придерживается чистой стратегии, но в популяции наблюдается устойчивая комбинация игроков, использующих разные стратегии. Это полиморфное равновесие, сформировавшееся в игре в труса, о которой шла речь в разделе 3. Второй сводится к применению каждым игроком смешанной стратегии. Мы начнем с полиморфного случая.

Г. V < C: устойчивая полиморфная популяция

Когда доля «ястребов» в популяции равна h, уровень их приспособленности составляет h(V–C)/2 + (1 — h)V, а уровень приспособленности «голубя» — h ? 0 + (1 — h)(V/2). Уровень приспособленности «ястреба» выше, если

Это неравенство можно упростить:

V — hC > 0,

В таком случае уровень приспособленности типа «голубь» выше, когда h > V/C, или когда (1 — h) < 1 — (V/C) = (C–V)/C. Стало быть, каждый тип более приспособлен, если его численность меньше. Следовательно, мы имеем устойчивое полиморфное равновесие в равновесной точке, в которой доля «ястребов» в популяции составляет h = V/C. Это и есть рассчитанная в разделе 6.А вероятность, с которой каждый отдельный игрок выбирает стратегию «ястреб» в равновесии Нэша в смешанных стратегиях данной игры при условии рационального поведения игроков. К тому же мы также получили эволюционное «обоснование» исхода в виде смешанной стратегии в игре в труса.

Мы предоставляем вам возможность построить для этого случая график, аналогичный представленному на рис. 12.7. Для этого вам понадобится определить динамику, в соответствии с которой доли каждого типа в популяции сходятся к устойчивой равновесной комбинации.

Д. V < C: каждый игрок смешивает стратегии

Вспомните рассчитанную в разделе 6.А равновесную смешанную стратегию в рациональной игре, где p = V/C — вероятность выбора стратегии «ястреб», а (1 — p) — вероятность выбора стратегии «голубь». Есть ли параллель в эволюционной версии игры, когда фенотип выбрал бы смешанную стратегию? Проанализируем такую возможность. У нас по-прежнему есть игроки типа Я, использующие чистую стратегию «ястреб», и игроки типа Г, использующие чистую стратегию «голубь». Но теперь может существовать еще и третий фенотип С, применяющий смешанную стратегию, включая в нее стратегию «ястреб» с вероятностью p = V/C и стратегию «голубь» с вероятностью 1 — p = 1 — (V/C) = (C–V)/C.

Когда Я или Г встречает С, их ожидаемый выигрыш зависит от p — вероятности того, что С выберет стратегию Я, и от (1 — p) — вероятности того, что С выберет стратегию Г. Тогда каждый игрок получает p, умноженное на его выигрыш в игре против Я, плюс (1 — p), умноженное на его выигрыш в игре против Г. Таким образом, когда Я противостоит С, его ожидаемый выигрыш составит

А когда Г противостоит С, его выигрыш равен

Уровни приспособленности двух типов одинаковы. Это не должно стать неожиданностью: соотношение чистых стратегий должно обеспечивать именно такое равенство. Тогда игрок типа С в противостоянии с другим игроком типа С получит тот же ожидаемый выигрыш. Для того чтобы было проще ссылаться на него в дальнейшем, обозначим его символом K, где K = V(C–V)/2C.

Но такое равенство создает проблему при проверке стратегии С на эволюционную устойчивость. Предположим, популяция целиком состоит из игроков типа С и в нее вторгаются мутанты типа Я, составляющие совсем малую долю h от общей численности популяции. Тогда типичный мутант получит ожидаемый выигрыш h(V–C)/2 + (1 — h)K. Для того чтобы вычислить ожидаемый выигрыш игрока типа С, необходимо учесть, что он противостоит другому игроку типа С в (1 — h) случаях и каждый раз получает выигрыш K. Далее он вступает в противостояние с игроком типа Я в h взаимодействиях и в их ходе использует стратегию Я в p случаях и получает выигрыш (V–C)/2 и стратегию Г в (1 — p) случаев и получает выигрыш 0. Таким образом, общий ожидаемый выигрыш (уровень приспособленности) игрока типа С составляет

Поскольку у h очень малое значение, приспособленность игроков типа С и мутантов типа Я почти эквивалентна. Дело в том, что, когда мутантов очень мало, игроки как типа Я, так и типа С в основном противостоят только игрокам типа С и, как мы только что выяснили, в этом взаимодействии у обоих типов одинаковый уровень приспособленности.

Эволюционная устойчивость зависит от того, будет ли исходная популяция типа С более приспособленной, чем мутант типа Я, когда каждый из них противостоит одному из немногочисленных мутантов. В алгебраической форме тип С более приспособлен, чем тип Я, в противоборстве с другими мутантами типа Я, когда pV(C–V)/2C = pK > (V–C)/2. В нашем примере это условие выполняется, так как V < C, то есть (V–C) имеет отрицательное значение, а K имеет положительное значение. На интуитивном уровне это условие говорит нам о том, что мутант типа Я всегда будет получать более низкие результаты в противостоянии с другим мутантом типа Я из-за высоких издержек в связи с дракой, но тип С вступает в драку только иногда, а значит, несет такие издержки лишь в p случаях. В целом тип С добивается большего в противостоянии с мутантами.

Аналогично успех вторжения типа Г в популяцию С зависит от сравнения уровня приспособленности мутанта типа Г с уровнем приспособленности мутанта типа С. Как и раньше, мутант противостоит другому игроку типа Г в d случаях, а игроку типа С в (1 — d) случаях. Тип С также противостоит другому игроку типа С в (1 — d) случаях, однако в d случаях С противостоит Г и использует стратегию Я в p из этих случаев, получая при этом выигрыш pV, а также применяет стратегию Г в (1 — p) случаях, получая при этом выигрыш (1 — p)V/2. Из этого следует, что уровень приспособленности типа «голубь» составляет [dV/2 + (1 — d)K], тогда как уровень приспособленности типа С равен d ? [pV+(1 — p)V/2] + (1 — d)K. Последние члены выражений, описывающих уровни приспособленности, идентичны, а значит, вторжение «голубей» может быть успешным, только если V/2 больше pV + (1 — p)V/2. Это условие не выполняется: последнее выражение содержит взвешенное среднее V и V/2, которое больше V/2 при V > 0. Таким образом, вторжение мутантов типа «голубь» не может завершиться успехом.

Этот анализ говорит о том, что С — эволюционно устойчивая стратегия. Следовательно, если V < C, популяция может продемонстрировать любой из двух эволюционно устойчивых исходов. Один подразумевает смешение типов (устойчивый полиморфизм), а другой — присутствие в популяции только одного типа, смешивающего стратегии в том же соотношении, которое определяет полиморфизм.

Е. Немного общей теории

Теперь обобщим идеи, представленные в данном разделе, чтобы получить теоретическую основу и набор инструментов для дальнейшего использования. Такое обобщение неизбежно требует несколько более абстрактных обозначений и немного алгебры. В связи с этим мы рассмотрим только мономорфные равновесия в одном виде. Читатели, которые владеют математикой на должном уровне, смогут по аналогии описать полиморфные случаи с двумя видами. Читатели, которые не готовы к восприятию данного материала или для них он не представляет интереса, могут пропустить этот раздел без ущерба для целостности изложения материала[222].

Проанализируем взаимодействие между случайно отобранными из одного вида парами, популяции которого доступны стратегии I, J, K, …, среди которых могут быть как чистые, так и смешанные. Каждый отдельный член популяции запрограммирован на использование только одной из этих стратегий. Обозначим E(I, J) выигрыш игрока I от одного взаимодействия с игроком J. Выигрыш игрока I в противостоянии с другим представителем своего типа составляет E(I, I) в той же системе обозначений. Пусть W(I) — уровень приспособленности игрока I. Это просто его ожидаемый выигрыш в противостоянии с произвольно выбранными соперниками, когда вероятность встретить игрока определенного типа равна доле этого типа в популяции.

Допустим, популяция состоит только из игроков типа I. Проанализируем, может ли такая конфигурация быть эволюционно устойчивой. Для этого представим, что популяцию захватывают несколько мутантов типа J; значит, доля m мутантов в популяции очень маленькая. Уровень приспособленности типа I составляет

W(I) = mE(I, J) + (1 — m) E(I, I).

Уровень приспособленности мутанта равен

W(J) = mE(J, J) + (1 — m) E(J, I).

Следовательно, разница между уровнями приспособленности основного и мутантного типов популяции определяется формулой

W(I) — W(J) = m[E(I, J) — E(J, J)] + (1 — m) [E(I, I) — E(J, I)].

Поскольку m очень маленькое, уровень приспособленности основного типа будет выше по сравнению с приспособленностью мутанта, если вторая часть представленного выражения имеет положительное значение, то есть

W(I) > W(J), если E(I, I) > E(J, I).

В таком случае основной тип в популяции не может быть захвачен; он более приспособлен, чем мутантный тип, когда каждый противостоит члену основного типа. Это и есть первичный критерий эволюционной устойчивости. Напротив, если W(I) < W(J) — тогда E(I, I) < E(J, I) — вторжение мутантов типа J будет успешным, поэтому популяция, полностью состоящая из игроков типа I, не может быть эволюционно устойчивой.

Однако возможна ситуация, когда E(I, I) = E(J, I), как и происходит на самом деле, если популяция изначально состоит из одного фенотипа, смешивающего чистые стратегии I и J (мономорфное равновесие со смешанной стратегией), как было в последнем варианте игры «ястреб — голубь» (раздел 6.Д). Тогда разность между W(I) и W(J) зависит от того, насколько успешно оба типа противостоят мутантам[223]. Когда E(I, I) = E(J, I), получаем W(I) > W(J), если E(I, J) > E(J, J). Это вторичный критерий эволюционной устойчивости, который следует применять, только если первичный критерий не позволяет сделать однозначный вывод, то есть если E(I, I) = E(J, I).

При применении вторичного критерия — поскольку E(I, I) = E(J, I) — существует вероятность того, что он также не позволит сделать однозначный вывод. Другими словами, возможно, что E(I, J) = E(J, J). Это случай нейтральной устойчивости, о которой шла речь в разделе 5. Если ни первичный, ни вторичный критерий не обеспечивают убедительных результатов, то I считается нейтральной эволюционно устойчивой стратегией.

Обратите внимание, что у первичного критерия есть одна особенность. Он гласит, что если стратегия I эволюционно устойчива, то для всех остальных стратегий J, которые может попробовать применить мутант, E(I, I) ? E(J, I). Это означает, что стратегия I — наилучший ответ на саму себя. Иными словами, если бы члены этой популяции вдруг начали играть как придерживающиеся рационального поведения игроки, применение ими всеми стратегии I было бы равновесием Нэша. Таким образом, эволюционная устойчивость подразумевает наличие равновесия Нэша в соответствующей рациональной игре![224]

Это поразительный результат. Если вас не удовлетворяло предположение о рациональном поведении, лежащее в основе теории равновесий Нэша, представленной в предыдущих главах, и вы обратились к эволюционной теории в поисках более подходящего объяснения, то теперь вы убедились, что она дает те же результаты. Поистине занимательное биологическое описание (фиксированное не максимизирующее поведение, но при этом выбор в ответ на полученный в итоге уровень приспособленности) не обеспечивает новых исходов, а, скорее, предоставляет косвенное обоснование равновесия Нэша. Когда в игре есть несколько равновесий Нэша, эволюционная динамика может даже предоставить хороший аргумент для выбора одного из них.

Тем не менее ваша укрепившаяся уверенность в равновесии Нэша должна быть взвешенной. Наше определение эволюционной устойчивости скорее статично, чем динамично. Оно лишь позволяет проверить, что конфигурация популяции (мономорфная или полиморфная с надлежащим соотношением типов), которую мы тестируем на наличие равновесия, не может быть захвачена небольшой популяцией мутантов. Такая проверка не поможет определить, исчезнут ли все нежелательные типы и будет ли достигнута равновесная конфигурация в случае произвольной исходной комбинации типов в популяции. Кроме того, проверка проводится в отношении конкретных классов мутантов, которые считаются логически возможными, но если теоретик некорректно выполнит эту классификацию и в действительности может появиться тип мутантов, который он не учел, этот мутант может совершить успешное вторжение и разрушить предполагаемое равновесие. В конце анализа дилеммы заключенных с двумя повторениями, о которой шла речь в разделе 2.А, мы предупреждали о подобной вероятности, и в упражнениях вы увидите, как такое может произойти. И наконец, в разделе 5 мы убедились, что эволюционная динамика может вообще не гарантировать сходимости к более благоприятному из двух равновесий.