3. Внешние эффекты, или экстерналии

До сих пор мы видели, что коллективные игры проходят в контексте дилеммы заключенных, игры в труса или игры в доверие. Мы также видели, что равновесия Нэша в этих играх редко обеспечивают социально оптимальный уровень участия (или его ограничения). И даже когда социальный оптимум и равновесие Нэша совпадают, это, как правило, лишь одно из возможных равновесий, которые могут присутствовать в игре. Теперь мы глубже проанализируем различия между индивидуальными (или личными) и групповыми (или социальными) стимулами в таких играх. Кроме того, подробнее опишем воздействие решений каждого человека на других людей и группу в целом. Этот анализ совершенно четко объясняет наличие таких различий между стимулами, то, как они проявляются и что можно предпринять для достижения более благоприятных в социальном отношении исходов игры, чем в случае равновесия Нэша.

А. Поездки на работу и обратно и сопутствующие эффекты

Сначала давайте представим себе большую группу из 8000 жителей пригорода, которые ежедневно ездят в город на работу и обратно. Будучи одним из ее членов, вы можете выбрать для поездки либо скоростную магистраль (действие P), либо сеть местных дорог (действие S). Поездка по местным дорогам неизменно занимает 45 минут, сколько бы автомобилей по ним ни перемещалось. На поездку по скоростной автомагистрали уходит всего 15 минут при условии отсутствия заторов. Однако каждый водитель, выбирающий скоростную магистраль, увеличивает время в пути любого другого водителя, который поедет по этому маршруту, на 0,005 минуты (около одной четверти секунды).

Выигрыши в игре исчисляются в минутах сэкономленного времени — например, на сколько минут время поездки туда и обратно меньше одного часа. Следовательно, выигрыш водителей, обозначаемый как S(n), выбравших маршрут по местным дорогам, — постоянная величина: 60–45 = 15, независимо от значения n. Однако выигрыш водителей — P(n), — выбравших скоростную автомагистраль, зависит от значения n; в частности, P(n) = 60–15 = 45 при n = 0, но значение P(n) падает на 5 / 1000 (или 1 / 200) в случае каждого, кто выбирает автомагистраль для поездки на работу и обратно. С учетом этого, P(n) = 45 — 0,005n. Графики двух функций выигрышей представлены на рис. 11.9.

Рис. 11.9. Игра в выбор маршрута для поездки на работу и обратно

Предположим, сначала на автомагистрали находится 4000 автомобилей, то есть n = 4000. При таком количестве машин на дороге каждому водителю требуется 15 + 4000 ? 0,005 = 15 + 20 = 35 минут, чтобы добраться на работу; при этом каждый из них получает выигрыш P(n) = 25 [60–35, то есть P(4000)]. Как показано на рис. 11.9, этот выигрыш лучше, чем тот, который получат водители, выбравшие местные дороги. В итоге вы, будучи одним из них, можете принять решение переключиться с поездки по местным дорогам на поездку по скоростной автомагистрали. Выбор нового маршрута увеличит значение n на 1, что скажется на выигрышах остальных участников движения. Теперь количество водителей, выбравших автомагистраль, составляет 4001 (в том числе и вы), а время поездки каждого равно 35 + 5 / 200, или 35,005 минуты. При этом каждый водитель получит выигрыш P(n + 1) = P(4001) = 24,995, по-прежнему превышающий выигрыш от поездки по местным дорогам. Следовательно, у вас есть личный стимул изменить маршрут, поскольку P(n + 1) > S(n) (24,995 > 15).

Выбор другого маршрута приносит вам личную выгоду (которую получаете только вы), эквивалентную разности между вашими выигрышами до и после такого перехода; она составляет P(n + 1) — S(n) = 9,995 минуты. Поскольку вы — один человек, а значит, малая часть группы, полученная вами выгода в виде увеличения выигрыша в сравнении с общим выигрышем всей группы весьма небольшая, или маржинальная. В связи с этим мы называем ее маржинальной личной выгодой.

Однако теперь из-за вашего решения изменить маршрут каждому из 4000 других водителей, выбравших автомагистраль, придется тратить на поездку на 0,005 минуты больше. Это означает, что выигрыш каждого из них меняется на P(4001) — P(4000) = –0,005. Водители, выбравшие местные дороги, также столкнутся с изменением выигрышей в размере S(4001) — S(4000), но в нашем примере это равно нулю. Суммарное воздействие вашего решения на всех остальных водителей составляет 4000 ? (–0,005) = –20. Ваше действие, то есть переход с местных дорог на скоростную автомагистраль, повлияло на выигрыши других игроков. Всякий раз, когда действие одного человека оказывает подобное влияние на других людей, наблюдается сопутствующий эффект, или внешний эффект, или экстерналия. Следует отметить, что, поскольку вы представляете собой не более чем малую часть всей группы, ваше воздействие на ее членов следует называть маржинальным сопутствующим эффектом.

Совокупность таких факторов, как маржинальная личная выгода и маржинальный сопутствующий эффект, и есть полное воздействие вашего решения перейти на другой маршрут на группу людей, совершающих поездки на работу и обратно, или общее предельное изменение выигрыша группы или общества в целом. Мы называем данный показатель маржинальной социальной выгодой, связанной с выбором вами другого маршрута. В действительности эта «выгода» может быть положительной или отрицательной, поэтому само слово «выгода» в данном контексте не означает, что все случаи перехода на другой маршрут пойдут на пользу всей группе. В нашем примере общая предельная социальная выгода составляет 9,995 — 20 = –10,005 минуты. Следовательно, общий социальный эффект вашего перехода на другой маршрут носит негативный характер: в целом социальный выигрыш уменьшается более чем на 10 минут.

Б. Сопутствующие эффекты: общий случай

Мы можем описать эффекты, наблюдаемые в примере с поездками на работу и обратно, в еще более обобщенном виде с помощью функции социального выигрыша T(n), где n — количество людей, выбравших P, а значит, N — n — это число людей, выбравших S. Предположим, что сначала n людей выбрали P, а также что один человек переключается с S на P. Тогда количество людей, выбравших P, увеличивается на величину от 1 до (n + 1), а количество людей, выбравших S, уменьшается на величину от 1 до (N — n — 1). Таким образом, общий социальный выигрыш составляет

T(n + 1) = (n + 1)P(n + 1) + [N — (n + 1)] S (n + 1).

Увеличение общего социального выигрыша равно разности между T(n + 1) и T(n). После приведения и перестановки членов получим следующее уравнение:

T(n + 1) — T(n) = (n + 1) P(n + 1) + [N — (n + 1)] S (n + 1) — nP(n) — (N — n)S(n) =

[P(n + 1) — S (n)] + n[P(n + 1) — P(n)] + [N — (n + 1)][S(n + 1) — S(n)]. (11.1)

Уравнение (11.1) математически описывает различные эффекты перехода одного человека с S на P, которые мы наблюдали в примере с поездками на работу и обратно. Это уравнение показывает, как предельная социальная выгода делится на предельные изменения выигрышей подгрупп общей совокупности.

Первый из трех членов уравнения (11.1) (а именно [P(n + 1) — S (n)]) — это маржинальная личная выгода, полученная человеком, переключающимся на другое действие. Как мы видели выше, именно этот член уравнения определяет выбор человека, причем все отдельные варианты такого выбора образуют равновесие Нэша.

Второй и третий члены уравнения (11.1) — количественная оценка сопутствующих эффектов, связанных с влиянием перехода одного человека на всех остальных участников группы. У каждого из n человек, выбравших P, выигрыш меняется на величину [P(n + 1) — P(n)], если еще один человек переключается на P; этот сопутствующий эффект можно наблюдать во второй группе членов уравнения (11.1). После перехода одного человека на другое действие остается еще N — (n + 1), или N — n — 1, других участников группы, которые по-прежнему выбирают S, причем каждый из них видит, что его выигрыш меняется на [S(n + 1) — S(n)]; этот сопутствующий эффект отображен в третьей группе членов уравнения. Безусловно, выбор одним водителем другого маршрута оказывает совсем незначительное влияние на время пребывания остальных участников движения в пути, однако когда их на дороге очень много (то есть при большом значении N), совокупный сопутствующий эффект может быть достаточно большим.

Таким образом, мы можем записать уравнение (11.1) при переходе одного человека с S на P или с P на S как:

Маржинальная социальная выгода = маржинальная личная выгода + маржинальный сопутствующий эффект.

В примере, в котором один человек переходит с S на P, мы имеем:

Маржинальная социальная выгода = T(n + 1) — T(n),

Маржинальная личная выгода = P(n + 1) — S(n),

Маржинальный сопутствующий эффект = n[P(n + 1) — P(n)] + [N — (n + 1)] ? [S(n + 1) — S(n)].

Применение дифференциального исчисления к формулам общего случая. Прежде чем более подробно рассматривать некоторые ситуации с наличием сопутствующего эффекта, чтобы понять, что можно сделать для обеспечения социально оптимальных исходов, мы сформулируем общие концепции этого анализа на языке дифференциального исчисления. Если вы не знаете этого языка, можете опустить оставшуюся часть данного раздела, не рискуя нарушить целостность изложенного здесь материала. Если же знаете, альтернативная формулировка покажется вам проще и понятнее, чем представленные выше алгебраические преобразования.

Если общее количество N членов группы очень большое (например, исчисляется в сотнях или тысячах), то одного человека можно воспринимать как совсем небольшую, или бесконечно малую, часть целого. Это позволяет рассматривать n как непрерывную переменную. Если T(n) — общий социальный выигрыш, мы вычислим эффект от изменения n, проанализировав увеличение бесконечно малой предельной величины dn вместо увеличения на целую единицу с n до (n + 1). В первом приближении изменение выигрыша составляет T?(n)dn, где T?(n) — производная от T(n) по n. Воспользовавшись выражением для общего социального выигрыша

T(n) = nP(n) + (N — n)S(n)

и продифференцировав это выражение, получим

T?(n) = P(n) + nP?(n) — S?(n) + (N — n)S?(n) = [P(n) — S(n)] + nP(n) + (N — n)S?(n). (11.2)

Это эквивалент уравнения (11.1), выраженный в терминах дифференциального исчисления. T?(n) — это маржинальная социальная выгода. Маржинальная личная выгода равна P(n) — S(n), что представляет собой изменение выигрыша человека от перехода с S на P. В уравнении (11.1) оно было представлено как P(n + 1) — S(n), теперь же мы имеем P(n) — S(n). Это объясняется тем, что прибавление бесконечно малой величины dn к группе из n человек, выбравших P, не приводит к существенному изменению выигрыша ни одного из них. Тем не менее общее изменение их выигрыша, равное nP?(n), представляет достаточно большую величину и учитывается в вычислении сопутствующего эффекта — это второй член в уравнении (11.2), — так же как и изменение выигрыша (N — n) человек, выбравших S, то есть (N — n)S?(n), третий член уравнения (11.2). Два последних члена уравнения представляют собой предельный сопутствующий эффект.

В примере с поездками на работу и обратно у нас были такие значения: P(n) = 45 — 0,005n и S(n) = 15. Далее с помощью вычислений мы пришли к выводу, что предельная личная выгода каждого водителя, выбирающего автомагистраль, когда n водителей уже движутся по ней, составляет P(n) — S(n) = 30 — 0,005n. Поскольку P?(n) = –0,005, а S?(n) = 0, сопутствующий эффект составляет n ? (–0,005) + (N — n) ? 0 = –0,005n, что равно ?20 при n = 4000. Ответ такой же, как и раньше, но дифференциальное исчисление упрощает процесс его получения и помогает найти оптимум непосредственно.

В. Еще раз о поездках на работу и обратно: отрицательные экстерналии

Отрицательная экстерналия наблюдается в случае, когда действие одного человека снижает выигрыши других членов группы, что перекладывает на них часть дополнительных затрат. Мы наблюдали это в примере с поездками на работу и обратно, где предельный сопутствующий эффект от перехода одного человека на автомагистраль был отрицательным, поскольку увеличивал время поездки других участников движения на 20 минут. Однако человек, меняющий маршрут поездки на работу, не учитывает сопутствующий эффект (экстерналию); его мотивируют только собственные выигрыши. (Не забывайте, что чувство вины, которое он может испытывать в связи с причинением вреда окружающим, уже должно быть отображено в его выигрышах.) Такой человек изменит свое действие с S на P, если это позволит ему получить положительную маржинальную личную выгоду. Тогда это изменение поставит его в более выгодное положение.

Однако общество в целом бы выиграло, если бы решения человека, регулярно совершающего поездки из пригорода на работу и обратно, зависели от маржинальной социальной выгоды. В нашем примере она имеет отрицательное значение –10,005, тогда как маржинальная личная выгода — положительное 9,995, поэтому отдельный водитель переходит с местных дорог на автомагистраль, даже если для общества было бы лучше, чтобы он этого не делал. В общем, в ситуациях с отрицательными экстерналиями маржинальная социальная выгода меньше маржинальной личной выгоды, что объясняется существованием отрицательного сопутствующего эффекта. Люди принимают решения на основании расчетов издержек и преимуществ, что неправильно с точки зрения общества. В итоге отдельные люди выбирают действия с отрицательным сопутствующим эффектом чаще, чем того хотело бы общество.

Уравнение (11.1) можно использовать для определения точных условий, при которых переход приносит выгоду одному человеку, в отличие от всей группы. Вспомните, что если n человек уже пользуются скоростной автомагистралью, а один водитель планирует перейти на нее с местных дорог, он получит от этого выгоду, если P(n + 1) > S(n), тогда как социальный выигрыш увеличивается при условии, что T(n + 1) — T(n) > 0. Личный выигрыш имеет положительное значение, если

45 — (n + 1) ? 0,005 > 15,

44,995 — 0,005n > 15,

n < 200 (44,995 — 15) = 5999.

При этом социальная выгода имеет положительное значение при выполнении следующего условия:

45 — (n + 1) ? 0,005 — 15 — 0,005n > 0

29,995 — 0,01n > 0,

n < 2999,5.

Таким образом, при наличии свободы выбора люди, которые регулярно ездят из пригорода на работу и обратно, выберут маршрут, пролегающий по скоростной автомагистрали, пока их число не достигнет 6000, но при этом любое количество, превышающее 3000, сокращает общий социальный выигрыш. Для всей совокупности водителей было бы лучше, если бы их количество не превышало 3000.

Этот результат представлен в виде графика на рис. 11.10; он дублирует рис. 11.9, но с добавлением линий маржинальной личной и социальной выгоды. Две линии, соответствующие функциям P(n + 1) и S(n), пересекаются в точке n = 5999, иными словами, в точке, соответствующей такому значению n, при котором P(n + 1) = S(n), то есть при котором маржинальная личная выгода равна нулю. В любой точке слева от этого значения n каждый отдельно взятый водитель, пользующийся местными дорогами, может подсчитать, что он получит положительную выгоду от перехода на автомагистраль. По мере совершения водителями такого перехода количество автомобилей на автомагистрали увеличивается — значение n повышается, так же как и в примере, о котором шла речь в разделе 3.А. Напротив, справа от точки пересечения (то есть при n > 5999) S(n) > P(n + 1), а значит, каждый из (n + 1) водителей, пользующихся автомагистралью, получит выгоду от перехода на местные дороги. И по мере того как некоторые водители действительно начнут это делать, количество автомобилей на автомагистрали будет сокращаться, а значение n падать. Слева от точки пересечения этот процесс сходится к n = 5999, а справа — к 6000.

Рис. 11.10. Равновесие и оптимум в игре в выбор маршрута для поездки на работу и обратно

При использовании подхода, основанного на дифференциальном исчислении, мы бы рассматривали 1 как малое приращение n и построили бы график P(n) вместо P(n + 1). Тогда точкой пересечения было бы значение n = 6000, а не 5999. Очевидно, что на практике это фактически не играет роли. То есть мы можем назвать n = 6000 равновесием Нэша в игре с изменением маршрута в случае, когда выбор обусловлен сугубо личными соображениями. При наличии свободы выбора из 8000 человек, которые регулярно ездят из пригорода на работу и обратно, 6000 выберут скоростную автомагистраль и только 2000 будут ездить по местным дорогам.

Однако мы также можем представить исход этой игры с точки зрения всех жителей пригородной зоны. В целом они выигрывают от увеличения количества водителей n, пользующихся автомагистралью, если T(n + 1) — T(n) > 0, и проигрывают от увеличения n, если T(n + 1) — T(n) < 0. Для того чтобы разобраться, как это отобразить на графике, сформулируем идею несколько иначе. В частности, перепишем уравнение (11.1), разбив его на два фрагмента, один из которых зависит только от P, а другой — только от S:

T(n + 1) — T(n) = (n + 1)P(n + 1) + [N — (n + 1)]S(n + 1) — nP(n) — [N — n]S(n) = S(n){P(n + 1) + n[P(n + 1) — P(n)]} — {S(n) + [N — (n + 1)][S(n + 1) — S(n)]}.

Выражение в первой группе скобок — это воздействие на выигрыши членов группы, выбравших P; в него входит P(n + 1) человек, перешедших на другой маршрут, а также сопутствующий эффект n[P(n + 1) — P(n)], отражающий влияние на всех остальных n человек, выбравших P. Мы называем это маржинальным социальным выигрышем подгруппы, выбравшей P, в случае если ее численность увеличивается с n до n + 1, или сокращенно MP(n + 1). Аналогично, выражение во второй группе скобок — маржинальный социальный выигрыш подгруппы, выбравшей S, или сокращенно MS(n). В итоге все выражение для T(n + 1) — T(n) говорит о том, что общий социальный выигрыш увеличивается, когда один человек переходит с S на P (или уменьшается, когда один человек переключается с P на S), если MP(n + 1) > MS(n), и уменьшается, когда один человек переходит с S на P (или увеличивается, когда один человек переключается с P на S), если MP(n + 1) < MS(n).

Воспользовавшись выражениями для P(n + 1) и S(n) в примере с поездками на работу и обратно, получим

MP(n + 1) = 45 — (n + 1) ? 0,005 + n ? (–0,005) = 44,995 — 0,01n.

При этом MS(n) = 15 для всех значений n. На рис. 11.10 представлены также графики функций MP(n + 1) и MS(n). Обратите внимание, что MS(n) везде совпадает с S(n), поскольку на местных дорогах не бывает заторов. Однако линия MP(n + 1) находится под линией P(n + 1). Из-за отрицательного сопутствующего эффекта социальная выгода от перехода одного человека на автомагистраль меньше его личной выгоды.

Графики MP(n + 1) и MS(n) пересекаются в точке n = 2999, или приблизительно 3000. Слева от точки пересечения MP(n + 1) > MS(n), то есть группа в целом выиграет от перехода еще одного человека на автомагистраль. Справа от точки пересечения все наоборот, то есть группа выиграет от перехода одного человека с автомагистрали на местные дороги. Таким образом, социально оптимальное распределение водителей — 3000 на автомагистрали и 3000 на местных дорогах.

При использовании подхода, основанного на дифференциальном исчислении, общий выигрыш водителей, передвигающихся по автомагистрали, можно было бы записать так: nP(n) = n(45 — 0,005n) = 45n — 0,005n2. Тогда MP(n + 1) — производная этого выражения по n, а именно 45 — 0,005 ? 2n = 45 — 0,01n. Оставшая часть анализа выполняется так же, как описано выше.

Как обеспечить оптимальное распределение водителей с точки зрения общества в целом? В разных культурах и политических группах используются различные системы, каждая со своими преимуществами и недостатками. Общество может просто запретить 3000 водителям доступ на скоростную автомагистраль. Но по каким критериям их отбирать? Можно применить принцип живой очереди, но тогда водители будут пытаться обогнать друг друга, чтобы добраться до автомагистрали первыми, и потеряют кучу времени. Бюрократическое общество могло бы установить критерии, основанные на выполненных чиновниками сложных расчетах потребностей и заслуг, и тогда каждый водитель стал бы предпринимать затратные действия, чтобы удовлетворять этим критериям. Политизированное общество может отдать предпочтение важным «независимым избирателям», или организованным группам активистов, или лицам, делающим пожертвования. В коррумпированном обществе привилегии могли бы получить те, кто дает взятки чиновникам или политикам. Более эгалитарное общество может разыгрывать права на поездку по автомагистрали в лотерею или распределять их по ротационному принципу, каждый месяц меняя тех, кому они принадлежат. В качестве примера такого распределения можно привести схему, согласно которой вы получаете право ездить по автомагистрали только в определенные дни, в зависимости от последней цифры на номерном знаке вашего автомобиля. Однако такая схема не столь демократична, как может показаться поначалу, поскольку богатые люди могут купить два автомобиля и выбирать номерные знаки так, чтобы это позволяло им пользоваться автомагистралью ежедневно.

Многие экономисты предпочитают более открытую систему тарифов на проезд по автомагистрали. Предположим, каждый передвигающийся по ней водитель должен заплатить пошлину t, исчисляемую в единицах времени. В таком случае личная выгода от использования автомагистрали составляет P(n) — t, а число n в равновесии Нэша определяется выражением P(n) — t = S(n). (Здесь мы игнорируем малую разность между P(n) и P(n + 1), что допустимо при очень больших значениях N.) Мы знаем, что социально оптимальное значение n равно 3000. Воспользовавшись выражениями P(n) = 45 — 0,005n и S(n) = 15 и подставив 3000 вместо n, находим, что P(n) — t = S(n), то есть водителям безразлично, по какому маршруту ехать, автомагистралью или местными дорогами, если 45–15 — t = 15 или t = 15. Если стоимость времени при минимальной оплате труда составляет около 5 долларов в час, 15 минут обойдутся в 1,25 доллара. Это и есть пошлина, или плата за проезд, введение которой позволит удерживать количество водителей, пользующихся автомагистралью, на социально оптимальном уровне.

Обратите внимание, что, когда 3000 водителей пользуются автомагистралью, добавление одного участника движения увеличивает время пребывания каждого водителя в пути на 0,005 минуты, то есть в сумме на 15 минут. Это и есть та пошлина, которую должен заплатить каждый водитель. Другими словами, он должен оплатить стоимость отрицательного сопутствующего воздействия, оказываемого им на остальных членов группы. Это наглядно демонстрирует каждому водителю дополнительные издержки, которые влекут за собой его действия, что, в свою очередь, побуждает его выбрать социально оптимальное действие. Экономисты в таком случае говорят, что отдельный человек вынужден перенять экстерналию. Тот факт, что люди, действия которых причиняют вред другим людям, должны его оплачивать, повышает привлекательность данного подхода. Однако средства, вырученные от взимания пошлины, не передаются непосредственно на возмещение ущерба другим людям. Если бы это было так, то каждый пользователь автомагистрали рассчитывал бы получить за счет других именно ту сумму, которую он платит сам, и вся система потеряла бы смысл. Вместо этого деньги, вырученные от пошлины, уходят в казну государства, где их могут потратить (или не потратить) на благо общества.

Экономисты, предпочитающие полагаться на рынки, утверждают, что если бы автомагистраль находилась в частной собственности, ее владелец был бы заинтересован взимать такую плату за проезд, которая бы сократила количество пользователей автомагистрали до социально оптимального уровня. Владелец автомагистрали знает, что, если он взимает пошлину t с каждого водителя, их количество будет определяться по формуле P(n) — t = S(n). Его доход составит tn = n[P(n) — S(n)], и он будет действовать так, чтобы максимизировать его. В нашем примере доход равен n[45 — 0,005n — 15] = n[30 — 0,005n] = 30n — 0,005n2. Очевидно, что доход достигает максимума при n = 3000. Однако в этом случае прибыль уйдет в карман владельца автомагистрали, а большинство людей считают это неприемлемым.

Г. Положительные сопутствующие эффекты

Многие вопросы, касающиеся положительных сопутствующих эффектов, или положительных экстерналий, можно рассматривать как зеркальное отображение вопросов, связанных с отрицательными сопутствующими эффектами. Личная выгода человека от выполнения действий, обусловливающих положительный сопутствующий эффект, меньше маржинальной выгоды общества от этих действий. Следовательно, в случае равновесия Нэша такие действия будут применяться не очень активно и общество не получит от них адекватной выгоды. Более благоприятного результата можно достичь путем повышения заинтересованности людей; социальный оптимум можно обеспечить, предоставляя тем, чьи действия создают положительные сопутствующие эффекты, вознаграждение, эквивалентное выгоде от сопутствующего эффекта.

На самом деле различие между положительным и отрицательным сопутствующим эффектом — в какой-то мере вопрос семантики. Будет ли эффект положительным или отрицательным, зависит от того, какое выбранное действие вы обозначите символом P, а какое — S. Предположим, что в примере с регулярными поездками на работу и обратно мы обозначили местные дороги как P, а автомагистраль как S. Тогда переход одного человека с S на P сократит время в пути остальных людей, выбравших S, а значит, это действие создаст для них положительный сопутствующий эффект. Можно рассмотреть еще один пример — вакцинацию против некоторых инфекционных болезней. Каждый человек, сделавший прививку, снижает как собственный риск подхватить болезнь (маржинальная личная выгода), так и риск окружающих заразиться ею от него (сопутствующий эффект). Если отсутствие прививки обозначить как действие S, то вакцинация создает положительный сопутствующий эффект, если — как действие P, то отказ от вакцинации создает отрицательный сопутствующий эффект. Это имеет свои последствия для разработки политики приведения действий отдельных людей в соответствие с социальным оптимумом. Общество может либо вознаграждать тех, кто проходит вакцинацию, либо налагать взыскание на тех, кто отказывается от нее.

Однако действиям, создающим положительный сопутствующий эффект, может быть присуще одно важное новое свойство, отличающее их от действий с отрицательным сопутствующим эффектом, а именно положительная обратная связь. Предположим, сопутствующий эффект от выбора вами действия P связан с увеличением выигрыша тех, кто также выбрал P. В таком случае ваш выбор повышает привлекательность этого действия (P) и может склонить других тоже его совершить, положив начало процессу, который завершится всеобщим выполнением этого действия. Напротив, если действие P выбирают очень немногие люди, то оно может быть настолько непривлекательным, что они и сами откажутся от него, что приведет к всеобщему выбору действия S. Другими словами, положительная обратная связь может привести к формированию множества равновесий Нэша; ниже мы проиллюстрируем эту ситуацию на примере из реальной жизни.

При покупке компьютера вам необходимо решить, на базе какой операционной системы — Windows или Linux (семейство Unix) — он должен работать, чтобы это было выгоднее для вас. Чем активнее растет количество пользователей Unix, тем целесообразнее покупать такой компьютер: в системе будет меньше ошибок, поскольку пользователи их обнаружат и устранят, к тому же будет доступно больше приложений, а также увеличится число специалистов, которые смогут вам помочь при возникновении проблем. Точно так же привлекательность компьютера на Windows будет повышаться по мере увеличения количества пользователей этой ОС. Кроме того, многие компьютерные фанаты убеждены, что операционная система Unix вне всякой конкуренции. Придерживаясь нейтральной позиции по этому вопросу, мы покажем, что произошло бы, если бы это было действительно так. Приведет ли индивидуальный выбор к получению наиболее благоприятного для всего общества результата?

Для отображения выигрышей от двух стратегий, Windows и Unix, отдельного покупателя мы используем такой же график, как на рис. 11.6 и рис. 11.8. Как показано на рис. 11.11, выигрыши от стратегии Unix повышаются по мере увеличения количества ее пользователей, а выигрыши от стратегии Windows повышаются, когда число пользователей Unix падает (соответственно, растет количество пользователей Windows). Как уже было сказано, этот график построен с учетом того, что выигрыш пользователей Unix, когда все остальные члены общей совокупности также предпочитают Unix (в точке U), выше выигрыша пользователей Windows, когда все остальные члены общей совокупности также выбирают Windows (в точке W).

Рис. 11.11. Выигрыши в игре с выбором операционной системы

Если в текущей совокупности только небольшая доля пользователей Unix, то ситуация отображается на графике слева от точки пересечения линий выигрышей точкой I; при этом каждый отдельный пользователь считает более целесообразным выбрать Windows. Когда в общей совокупности доля пользователей Unix больше, это смещает всю совокупность направо от I и каждому пользователю лучше выбрать Unix. Таким образом, смешанная совокупность пользователей Unix и Windows может выступать в качестве равновесия только тогда, когда в текущей совокупности имеется ровно I пользователей Unix: лишь при этом условии ни у одного члена совокупности нет стимула перейти на другую платформу. Но даже эта ситуация неустойчива. Предположим, всего один человек случайно примет другое решение. Если он перейдет на Windows, его выбор сместит всю совокупность налево от точки I и тогда у других членов совокупности также появится стимул перейти на Windows. Если он перейдет на Unix, точка совокупности сместится направо от I, что стимулирует еще большее количество пользователей выбрать Unix. В конечном счете совокупный эффект этих переходов подтолкнет общую совокупность к исходу «все пользователи Unix» или «все пользователи Windows»; это и есть два устойчивых равновесия в данной игре[183].

Но какое из них будет достигнуто? Ответ зависит от того, где начинается игра. Если вы взглянете на конфигурацию современных пользователей компьютеров, то увидите среди них подавляющее большинство сторонников Windows. В связи с этим создается впечатление, что, поскольку пользователей Unix мало (или много пользователей Windows), мир движется к равновесию «все пользователи Windows». Школы, компании и частные пользователи оказались замкнутыми на этом равновесии вследствие исторической случайности. Если Unix действительно обеспечивает обществу дополнительные преимущества в случае ее повсеместного использования, тогда равновесие «все пользователи Unix» должно быть предпочтительнее по сравнению с равновесием «все пользователи Windows», к которому мы приближаемся. К сожалению, хотя общество в целом от такого изменения только бы выиграло, ни у одного пользователя компьютера нет личной заинтересованности менять сложившуюся ситуацию. Изменить ее в пользу Unix может только скоординированное действие. Прежде чем все посчитают целесообразным выбрать Unix, должна сформироваться критическая масса ее отдельных пользователей, превышающая имеющуюся в точке I на рис. 11.11.

Существует много примеров подобного рода условностей, соблюдаемых различными группами людей. Наиболее известны случаи, в отношении которых по прошествии времени заговорили как об ошибочном выборе. Сторонники этой точки зрения заявляют, что паровые двигатели можно было бы сделать гораздо эффективнее, чем двигатели внутреннего сгорания, и уж конечно, они были бы более экологически чистыми. Приверженцы клавиатуры с раскладкой Дворака уверены, что она была бы лучше раскладки QWERTY, если бы применялась повсюду. Многие инженеры сходятся во мнении, что у Betamax было преимущество перед VHS на рынке видеомагнитофонов. В таких случаях пристрастие публики или талант рекламистов помогают определить окончательное равновесие и могут привести к «плохому» или «неправильному» исходу с точки зрения общества. В других ситуациях подобных трудностей нет. Например, мало кто стал бы бороться за изменение цвета огней светофора[184].

Идеи положительной обратной связи и замыкания нашли важное практическое применение в макроэкономике. Рентабельность производства возрастает по мере повышения уровня спроса в экономке, что происходит при увеличении национального дохода. А национальный доход, в свою очередь, увеличивается в связи с ростом выпуска продукции и, как следствие, рабочих мест. Такая положительная обратная связь позволяет сформировать множество равновесий, среди которых равновесие, включающее высокий объем производства и высокий национальный доход, гораздо лучше для общества, но отдельные решения могут замкнуть экономику на равновесии с низким объемом производства и низким национальным доходом. Более благоприятное равновесие можно сделать фокальной точкой, публично об этом заявив («Единственное, чего мы должны бояться, — это самого страха»). Кроме того, правительство могло бы также повысить спрос в экономике до уровня, необходимого для ее перевода в более выигрышное равновесие. Иными словами, с точки зрения теории игр вероятность безработицы из-за дефицита совокупного спроса (о чем в терминах спроса и предложения на языке экономической теории говорит Джон Кейнс в опубликованной в 1936 году книге под названием Employment, Interest, and Money) можно считать следствием неспособности решить проблему коллективного действия[185].