Образцовое решение
Организуем данные таким образом, чтобы можно было учесть все возможности. Поскольку сумма точек на противоположных гранях равна 7, варианты сочетания могут быть лишь такими:
1 и 6;
2 и 5;
3 и 4.
Известно, что у трех соседних граней должна быть общая вершина. Всего вершин у кубика восемь, поэтому наборов из трех соседних граней тоже должно быть восемь. Посмотрим, разные у них суммы точек или нет. Для этого перечислим все возможные сочетания по три, выбирая одно число на описанных выше трех парах противоположных граней, а потом определим их суммы. Чтобы не пропустить ни одной возможности, выбор будем проводить упорядоченно:
Существует восемь разных сумм, как и следовало ожидать при восьми вершинах.