Образцовое решение
Лучше всего рассмотреть эту задачу шаг за шагом, а потом, для уверенности, рассмотреть экстремальную ситуацию и принять решение.
Разберем задачу шаг за шагом. Результат постепенно станет ясным. За дверями находятся два осла и один автомобиль. Вы должны попытаться получить автомобиль. Вы выбираете дверь 3. Монти Холл открывает одну из дверей, которую вы не выбрали, и показывает осла.
Он спрашивает: «Вы все еще хотите оставить свой первоначальный выбор или передумаете и выберете другую закрытую дверь?» Чтобы помочь принять решение, воспользуемся стратегией анализа экстремальных ситуаций. Допустим, у нас 1000 дверей, а не три.
Вы выбираете дверь 1000. Какова вероятность того, что это правильная дверь?
«Очень маловероятно», поскольку вероятность выбора правильной двери равна
Насколько вероятно, что автомобиль находится за одной из других дверей (1–999)?
«Очень вероятно»:
Это все «очень вероятные» двери!
Теперь мы готовы ответить на вопрос. Какой выбор будет наилучшим?
• Дверь 1000 («очень маловероятная» дверь) или
• Дверь 1 («очень вероятная» дверь)?
Ответ теперь очевиден. Мы должны выбрать «очень вероятную» дверь, т. е. «передумать» — это лучшая стратегия для участника шоу. В экстремальной ситуации намного легче увидеть лучшую стратегию, чем при анализе ситуации с тремя дверями, как в исходных условиях задачи. Принцип одинаков в любой ситуации.
Эта задача вызвала немало споров в научных кругах и даже попала на страницы газеты The New York Times и других популярных изданий. Джон Тирни написал в The New York Times (Sunday, July 21, 1991), что «возможно это только иллюзия, однако похоже спору, в котором участвовали все от математиков до читателей журнала Parade и любителей телеигры Let's Make a Deal, положен конец. Спор начался, когда Мэрилин вос Савант опубликовала головоломку в журнале Parade. Как известно читателям ее колонки „Спросите Мэрилин“, имя г-жи вос Савант включено в списки Галереи славы Книги рекордов Гиннесса за обладание „наивысшего IQ“. Но этот факт производит на публику не такое впечатление, как то, что она сумела ответить на вопрос читателя». Мэрилин дала правильный ответ, и, хотя многие математики продолжают спорить, мы решили эту задачу!