ФАКТОРИАЛ

Так называют часто встречающуюся в практике функцию, определенную для целых неотрицательных чисел. Название функции происходит от английского математического термина factor - «сомножитель». Обозначается она n!. Для каждого целого положительного числа n функция n! равна произведению всех целых чисел от 1 до n. Например: n! = 1·2·3·4 = 24. Для удобства полагают по определению 0!=1. Особенно часто встречается факториал в комбинаторике. Например, количество способов выстроить n школьников в одну шеренгу равняется n!.

Функция n! растет с увеличением n очень быстро. Так, 1!=1, 2!=2, 3!=6, 4!=24, 5! = 120, …, 10! = 3628800.

Английский математик Дж. Стирлинг в 1730 г. предложил очень удобную формулу для приближенного вычисления функции n!:

, n → ∞.

Относительная ошибка при пользовании этой формулой очень невелика и быстро падает при увеличении числа n.