МСТИСЛАВ ВСЕВОЛОДОВИЧ КЕЛДЫШ
(1911-1978)
М. В. Келдыш – замечательный советский ученый и организатор науки, трижды Герой Социалистического Труда (1956, 1961, 1971), лауреат Ленинской (1957) и Государственных (1942, 1946) премий, академик (1946), президент Академии наук СССР (1961-1975), автор глубоких исследований в области математики, механики, техники.
Международное признание Келдышу как математику принесли его работы по теории функций комплексного переменного и ее приложений, в первую очередь по представлению аналитических функций рядами полиномов, где ему принадлежит одна из основных теорем. Широко известны также его работы по теории потенциала и гармоническим функциям, по дифференциальным уравнениям и вычислительной математике.
Многие теоретические исследования М. В. Келдыша были выполнены в Центральном аэрогидродинамическом институте им. Н. Е. Жуковского. Вместе с М. А. Лаврентьевым молодой ученый занимался исследованием задач аэрогидродинамики методами теории функций комплексного переменного. В частности, они первыми построили теорию движения крыла под поверхностью жидкости, впервые строго доказали, что на определенных режимах колебания крыла создают тянущую силу, создали теорию удара о поверхность воды.
Большой цикл работ Келдыша посвящен колебаниям авиаконструкций. Вплотную с явлением флаттера (колебаний частей самолета, приводящих к его гибели) авиаконструкторы столкнулись, когда от тихоходных бипланов с их жестко скрепленной коробкой крыльев стали переходить к более быстроходным монопланам. К 1940 г. Келдыш разработал эффективные способы расчета самолета на флаттер, указал методы балансировки, которые предотвращали гибель машин. Эти работы ученого сыграли заметную роль в создании советского воздушного превосходства во время Великой Отечественной войны.
Чтобы построить строгую теорию колебаний сложных систем с несимметричными прямыми и обратными связями между их частями, ему пришлось разработать новую главу функционального анализа, ее теперь называют теорией пучков Келдыша.
Еще одним из направлений работ М. В. Келдыша были вычислительные методы сверхзвуковой газовой динамики не только в связи с приложениями к задачам аэродинамики, но и к течениям в соплах, и к движениям сплошной среды (газообразной, жидкой или твердой) под действием взрыва.
С 1946 г. Келдыш начинает работать над ракетными системами. Вместе с И. В. Курчатовым и С. П. Королевым ученый участвовал в создании ракетно-ядерного щита нашей Родины. В последующие годы М. В. Келдыш вместе с С. П. Королевым стал одним из инициаторов работ по освоению космоса.
Он стоял у истоков прикладной небесной механики. Раньше ученые наблюдали небесные тела и описывали их движение. С началом космической эры потребовалось проектировать траектории полетов космических аппаратов вокруг Земли, к Луне и планетам Солнечной системы, уточнять их фактическую трассу и затем корректировать их движение. Эти задачи решались под руководством М. В. Келдыша и при его активном участии.
М. В. Келдыш был основателем Института прикладной математики АН СССР, носящего ныне его имя. С деятельностью этого института во многом связано становление современной вычислительной математики в нашей стране. Возглавляя Академию наук СССР, М. В. Келдыш внес выдающийся вклад в обеспечение развития многих фундаментальных направлений советской науки.
------------------------------------------
Итак, мы рассказали, что же входит в понятие «математика». Но существует еще и такое понятие, как прикладная математика. Под ним понимают совокупность всех математических методов и дисциплин, находящих применения за пределами математики. В древности геометрия и арифметика представляли всю математику и, поскольку та и другая находили многочисленные применения при торговых обменах, измерении площадей и объемов, в вопросах навигации, вся математика была не только теоретической, но и прикладной. Позднее, в Древней Греции, возникло разделение на математику и на математику прикладную. Однако все выдающиеся математики занимались и применениями, а не только чисто теоретическими исследованиями.
Дальнейшее развитие математики было непрерывно связано с прогрессом естествознания, техники, с появлением новых общественных потребностей. К концу XVIII в. возникла необходимость (в первую очередь в связи с проблемами навигации и артиллерии) создания математической теории движения. Это сделали в своих работах Г. В. Лейбниц и И. Ньютон. Прикладная математика пополнилась новым очень мощным методом исследования – математическим анализом. Почти одновременно потребности демографии, страхования привели к формированию начал теории вероятностей (см. Вероятностей теория). XVIII и XIX вв. расширили содержание прикладной математики, добавив в нее теорию дифференциальных уравнений обыкновенных и с частными производными, уравнения математической физики, элементы математической статистики, дифференциальную геометрию. XX в. принес новые методы математического исследования практических задач: теорию случайных процессов, теорию графов, функциональный анализ, оптимальное управление, линейное и нелинейное программирование. Более того, выяснилось, что теория чисел и абстрактная алгебра нашли неожиданные применения к задачам физики. В результате стало складываться убеждение, что прикладной математики как отдельной дисциплины не существует и вся математика может считаться прикладной. Пожалуй, нужно говорить не о том, что математика бывает прикладная и теоретическая, а о том, что математики разделяются на прикладников и теоретиков. Для одних математика является методом познания окружающего мира и происходящих в нем явлений, именно для этой цели ученый развивает и расширяет математическое знание. Для других математика сама по себе представляет целый мир, достойный изучения и развития. Для прогресса науки нужны ученые и того, и другого плана.
Математика, прежде чем изучать своими методами какое-нибудь явление, создает его математическую модель, т.е. перечисляет все те особенности явления, которые будут приниматься во внимание. Модель принуждает исследователя выбирать те математические средства, которые позволят вполне адекватно передать особенности изучаемого явления и его эволюции. В качестве примера возьмем модель планетной системы: Солнце и планеты рассматриваются как материальные точки с соответствующими массами. Взаимодействие каждых двух точек определяется силой притяжения между ними
где m1 и m2 – массы взаимодействующих точек, r – расстояние между ними, а f - постоянная тяготения. Несмотря на всю простоту этой модели, она в течение вот уже трехсот лет с огромной точностью передает особенности движения планет Солнечной системы.
Конечно, каждая модель огрубляет действительность, и задача исследователя состоит в первую очередь в том, чтобы предложить модель, передающую, с одной стороны, наиболее полно фактическую сторону дела (как принято говорить, ее физические особенности), а с другой – дающую значительное приближение к действительности. Разумеется, для одного и того же явления можно предложить несколько математических моделей. Все они имеют право на существование до тех пор, пока не начнет сказываться существенное расхождение модели и действительности.