ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

Тригонометрическими уравнениями называют уравнения, в запись которых входят тригонометрические функции от неизвестного (см. Уравнения). При решении тригонометрических уравнений их обычно сводят к простейшим уравнениям вида R(x) = a, где R(x) - одна из основных тригонометрических функций (синус, косинус, тангенс, котангенс), a - некоторое число.

Простейшие тригонометрические уравнения

sin x = a и    (1)

cos x = a      (2)

при |a|>1 не имеют решений (рис. 1a, 2а), а при |a|≤1 имеют два корня на любом полуоткрытом промежутке длины 2π (совпадающие при |a| = 1 (рис. 1б, 2б). Все корни этих уравнений выписывают с помощью формул

x = (-1)k arcsin a + πk, k = 0,±1,±2,...,

для уравнения (1);

x = ± arccos a + 2πk,

для уравнения (2)

(рис. 1, 2) (см. Обратные тригонометрические функции).

Рис. 1

Рис. 2

Уравнение

tg x = a   (3)

имеет при любом a один корень на любом полуоткрытом промежутке длины π, при этом

x = arctg a + πk, k ∈ Z.

Уравнение

ctg x = a      (4)

также имеет при любом a один корень на любом полуоткрытом промежутке длины π, корни уравнения (4) задаются формулой

x = arcctg a + πk, k ∈ Z.

Уравнение вида R(g(x)) =a заменой переменной y = g(x) сводится к простейшему уравнению R(y) = a (R - одна из основных тригонометрических функций). Из этого уравнения можно найти значения yk, после чего останется решить уравнение замены g(x) = yk.

Решим уравнение sin 1/(x-2) = 0. Обозначая y = 1/(x - 2), получим 1/(x - 2) = πk, k = ±1,±2,...; x - 2 = 1/πk, x = 2 + 1/πk. Ответ: {2 + 1/πk; k = ±1,±2,...}.

Нередко замена y = R(x) сводит исходное уравнение к алгебраическому относительно R(x). После нахождения значений y1,y2,... остается решить простейшие уравнения R(x) = y1, R(x) = y2. Например, замена y = sin x сводит уравнение 1 - sin x - 2cos2 x = 0 к алгебраическому уравнению 2y2 - y - 1 = 0.

В случае, когда определен tg(x/2), справедливы формулы:

;    
;    
.

С помощью этих формул уравнение, связывающее значения sin x, cos x, tg xи ctg x, приводится к уравнению относительно t = tg(x/2). Отдельно надо рассмотреть случай, когда tg(x/2) не определен (т.е. cos (x/2) = 0).

Решим уравнение 2 sin x + cos x = ctg(x/2) - 1. Значения π + 2πk, k = 0,±1,±2,... при которых не определен tg(x/2), являются решениями уравнения (при таких x  cos x = -1, sin x = 0, ctg (x/2) = 0 и 2·0-1 = 0-1). При остальных x можно воспользоваться формулами (5); обозначая tg(x/2) через t, получим:

, 3t2 + 2t - 1 = 0,

откуда t = -1 или t = 1/3.

Ответ:

{π + 2πk; -π/2 + 2πk; 2arctg 1/3 + 2πk, k = 0,±1,±2,... }.

Уравнение вида

A cos x + B sin x = C,    (6)

где A,B,C - некоторые числа, удобно решать с помощью введения вспомогательного аргумента по следующей схеме. Записывая уравнение (6) в виде

,

легко заметить, что

,

поэтому существует такой угол φ, что

;
.

Следовательно,

,

и мы получили простейшее уравнение относительно y = x - φ.