СРЕДНИЕ ЗНАЧЕНИЯ
Классическими средними значениями, составленными из двух положительных чисел a и b, принято считать: среднее арифметическое - число (a+b)/2, среднее геометрическое (называемое также средним пропорциональным) - число
a-m=m-b; a:g=g:b; (a-h):a=(h-b):b.
Из этих равенств легко получаем:
По преданию гармоническое среднее ввел Пифагор (VI в. до н.э.), выразив с его помощью отношение основных гармонических интервалов. Пифагор установил, что вместе со струной длиной 12l, созвучно сливаясь с ней, звучат струны того же натяжения с длинами 6l (выше на октаву), 8l и 9l (выше на квинту и кварту), при этом 9 есть среднее арифметическое чисел 6 и 12, а 8 он определил как среднее гармоническое этих чисел. Это созвучие (и определяющее его отношение чисел 6, 8, 9, 12) называлось тетрадой. Пифагорейцы считали, что тетрада есть «та гамма, по которой поют сирены».
В древнегреческой математике, которая была по преимуществу геометрической, было известно несколько способов построения средних по двум данным отрезкам a и b. У Паппа Александрийского (III в.) в его «Математическом собрании», своде результатов древнегреческой математики, приведено построение среднего геометрического двух отрезков по способам его предшественников Эратосфена (276-194 гг. до н.э.), Никомеда (II в. до н.э.) и Герона (I в.), дано также описание построения на одной фигуре всех трех средних.
На рис. 1 показано одно из возможных построений. АС и СВ (|АС| = а, |СВ| = b) - смежные отрезки одной прямой, на отрезке АВ как на диаметре построена окружность, радиус этой окружности равен (а + b)/2. В точке С восставлен перпендикуляр к прямой АВ. В прямоугольном треугольнике ANВ (угол ANВ - прямой, он опирается на диаметр) высота NC есть среднее пропорциональное отрезков АС и СВ, т. е. |NC| = v(ab). Если NM - проекция NC на NO, то нетрудно подсчитать, что |NM| = 2ab/(а + b). Так как перпендикуляр короче наклонной, то |NM| < |NC| < |ON|. Если длины отрезков АС и СВ равны, то точки О и С совпадают и совпадают также все рассматриваемые отрезки NM, NC и ON. Таким образом, при любых положительных а и b справедливы неравенства:
и в каждом из них знак равенства достигается лишь в случае a=b.
Рис. 1
Неравенство
Применив эти теоремы, нетрудно, например, установить, что из всех прямоугольников с заданным периметром наибольшую площадь имеет квадрат и из всех прямоугольников с заданной площадью наименьший периметр имеет также квадрат.
Средним арифметическим n положительных чисел a1,a2,...,an называется число
Средним геометрическим n положительных чисел a1,a2,...,an называется корень n-й степени из произведения этих чисел:
Средним гармоническим n положительных чисел a1,a2,...,an называется число
Заметим, что число, обратное среднему гармоническому h, есть среднее арифметическое n чисел, обратных данным:
Средним квадратичным n произвольных чисел a1,a2,...,an называется корень квадратный из среднего арифметического квадратов этих чисел:
Для любых положительных чисел a1,a2,...,an эти средние удовлетворяют неравенствам:
h ≤ g ≤ m ≤ d, (1)
в каждом из которых знак равенства достигается лишь в случае, когда a1=a2=...=an.
Самым важным и знаменитым из этих неравенств является неравенство о среднем арифметическом и среднем геометрическом:
Применяя его к числам 1/a1, 1/a2,..., 1/an, можно доказать неравенство h ≤ g, а применяя его к натуральным числам 1, 2,..., n и используя тот факт, что
1 + 2 + ... + n = n(n+1)/2,
получаем неравенство
Следствиями неравенства о среднем арифметическом и среднем геометрическом будут обобщения теорем 1) и 2) о максимуме произведения и минимуме суммы, на основе которых решаются многие задачи на экстремум: произведение n положительных чисел, при постоянной сумме, принимает наибольшее значение, когда все эти числа равны; сумма n положительных чисел, при постоянном произведении, принимает наименьшее значение, когда все эти числа равны. Обратим внимание, что среднее арифметическое, как и среднее квадратичное, имеет смысл не только для положительных, но и для произвольных чисел a1,a2,...,an, при этом справедливо неравенство m2≤d2. В случае, например, двух слагаемых оно принимает вид
и легко следует из тождественного неравенства (a1 - a2)2 ≥ 0. Неравенства для средних и сами средние широко применяются не только в алгебре, геометрии, математическом анализе, но и в статистике, в теории вероятностей (откуда пришло среднее квадратичное), при обработке результатов измерений.
Все рассмотренные средние являются частными случаями степенных средних: для положительных чисел a1,a2,...,an и отличного от нуля числа α степенным средним порядка α называется число
При α = -1,1,2 соответственно получается среднее гармоническое, среднее арифметическое и среднее квадратичное. При α = 0 A(α) не определено, однако можно показать, что при стремлении α к нулю A(α) стремится к среднему геометрическому, и потому можно считать S(0) средним геометрическим. Основное свойство степенных средних - это монотонность: S(α1) ≤ S(α2), если α1 < α2, в частности
S(-1) ≤ S(0) ≤ S(1) ≤ S(2).
Рассмотрим следующую процедуру. По двум положительным числам a и b составим их среднее арифметическое a1 = (a + b)/2 и среднее геометрическое
Образуются две последовательности чисел (an) и (bn). Например, если взяты числа a=1 и b=3, то первые члены последовательностей будут такие:
В приведенном примере последовательности (an) и (bn) очень быстро сближаются. В общем случае, как было показано немецким математиком К. Ф. Гауссом, последовательности (an) и (bn) приближаются друг к другу достаточно быстро и имеют общий предел. Предел этот называется арифметико-геометрическим средним чисел a и b. Он не выражается элементарно через a и b, однако не является и каким-то математическим курьезом, а находит многочисленные применения в ряде разделов математики.