ВЕРОЯТНОСТЕЙ ТЕОРИЯ

Теория вероятностей – наука о вычислении вероятностей случайных событий.

Основные объекты изучения теории вероятностей: 1) случайное событие и его вероятность; 2) случайная величина и ее функция распределения; 3) случайный процесс и его вероятностная характеристика. Например, задачи, которые возникают из ситуаций, обычных на телефонной станции: а) какова вероятность того, что на станцию за время t поступят n вызовов от абонентов? б) Какова вероятность того, что длительность ожидания соединения с нужным абонентом окажется большей, чем заданное число t0? в) Как со временем изменяется очередь на соединение? Какие закономерности появления вызовов во времени? Эти задачи показывают, что именно практика приводит к необходимости вводить математические понятия и изучать их. В задаче а) речь идет о вероятности наступления случайного события; в задаче б) – о разыскании функции распределения случайной величины (длительности ожидания); в задачах в) рассматриваются случайные процессы, связанные с обслуживанием абонентов.

Основой теории вероятностей является понятие вероятности случайного события. Интуитивно ясное понятие случайного события (появления данного числа вызовов на телефонной станции, выпадения грани 5 при бросании игральной кости и т.д.) формализуется. В современной теории вероятностей принят следующий подход. Рассматривается исходное множество – множество элементарных событий E. Далее выбираются подмножества этого множества. Например, при бросании игральной кости множество элементарных событий состоит из шести элементов (1, 2, 3, 4, 5, 6) – когда кость падает сторонами, обозначенными числами 1, 2, ..., 6. В качестве подмножеств рассматриваем возможности выпадения одной из двух граней i или j; или из трех граней i, или j, или k; ...; или выпадение одной из граней 1, или 2, или 3, …, или 6. Это последнее событие наступает при любом бросании кости, и поэтому оно называется достоверным. И в любом случае в качестве одного из подмножеств берется все множество. Оно наступает при любом испытании и является достоверным событием. Остальные подмножества являются случайными событиями. Множество F случайных событий (множество выбранных подмножеств E) не произвольно, а должно обладать следующими свойствами: наряду с событиями A и B в него входят также события A или B, а также A и B. Событие A или B называется суммой событий A и B и обозначается символом A + B, или символом A ∪ B. Событие A и B носит название пересечения (или произведения) событий A и B и обозначается символом AB (или символом A∩B). Требования, наложенные на множество случайных событий, позволяют заключить, что в это множество входит еще одно событие, называемое невозможным. Оно получается каждый раз, когда рассматривается AB, но события A и B составлены из разных элементарных событий. В примере с бросанием игральной кости если выбрать A={3}, а B={5}, то событию AB не соответствует ни один исход бросания кости. Это невозможное событие. Оно обозначается символом

.

События A и B называются несовместными, если AB=∅; иными словами, если события A и B не содержат в своем составе ни одного общего элемента (элементарного события). Определим теперь на множестве F неотрицательную функцию: каждому случайному событию A поставим в соответствие число P{A}≥0; для функции P{A} должны быть выполнены два дополнительных свойства: 1) если A и B несовместны, то P{A+B}=P{A}+P{B}; 2) если U - достоверное событие, то P{U}=1. Легко проверить, что классическая вероятность является как раз такой функцией. Величина P{A} называется вероятностью события A. Соотношение 1) носит наименование теоремы сложения вероятностей; она входит в состав трех простейших соотношений, позволяющих вычислять вероятности сложных событий по заданным вероятностям простых.

Два требования, наложенные на вероятность события, позволяют получить большое число следствий: а) вероятность невозможного события равна 0; б) каковы бы ни были события A и B, P{A+B}=P{A}+P{B}-P{AB}.

При определении вероятности случайного события всегда предполагается, что выполнен некоторый комплекс условий: игральная кость правильная, т.е. плотность вещества, из которого она сделана, постоянна, а ее форма является идеальным кубом. Таким образом, каждая вероятность является условной. Однако принято эту первичную совокупность условий считать само собой разумеющейся, никак не отмечать ее наличие и просто писать P{A} - вероятность события A, предполагая при этом, что указанный комплекс условий выполнен. Если же помимо этого комплекса условий известно, что осуществилось еще некоторое условие B, то в этом случае говорят об условной вероятности события A при условии Bи обозначают P{A/B}. Пусть событие A состоит в том, что при бросании игральной кости выпадет не более четырех очков. Вероятность этого события равна 4/6 = 2/3. Если нам стало известно событие B - число выпавших очков оказалось большим двух, то тогда могли выпасть лишь очки 3, 4, 5 или 6. Благоприятствуют интересующему нас событию лишь два из четырех, значит, P{A/B} = 2/4 = 1/2. Вообще говоря, условная вероятность P{A/B} не равна безусловной P{A}, однако могут быть случаи, когда P{A/B} = P{A}. В этом случае говорят, что событие A независимо от события B.

Найдем вероятность события AB. Чтобы произошло событие ABнужно, во-первых, чтобы произошло событие B, а во-вторых, чтобы наступило событие A при условии, что событие B наступило.

Рассмотрим классическую схему вероятности. Имеется n элементарных равновероятных событий. Событию A благоприятствуют какие-то j из них, событию B благоприятствует k и m - событию AB. Согласно определению P{A/B} = m/n = k/n · m/k. Но первый множитель правой части этого равенства равен P{B}, а второй – вероятность события A при условии, что B наступило. Таким образом, P{AB} = P{B}·P{A/B}. Точно такими же рассуждениями доказываем, что P{AB} = P{A}·P{B/A}. Из этих равенств, носящих название теоремы умножения вероятностей, вытекает, во-первых, что если A независимо от B, то и B независимо от A. Во-вторых, следует равенство P{A/B} = P{AB}/ P{B}.

Для общего определения вероятности равенство P{A/B} = P{AB}/ P{B} служит определением условной вероятности. Ясно, что и в этом случае имеет место теорема умножения, которая является второй основной теоремой.

Третьей основой вычислений в теории вероятностей служит так называемая формула полной вероятности. Пусть события A1,A2,...,A5 попарно несовместны и пусть событие B наступает только в том случае, когда происходит одно из событий Aj. В этом случае имеет место равенство B = BA1 + BA2 + ... + BA5.

Отсюда

.

В развитии теории вероятностей важную роль играла и продолжает играть так называемая схема Бернулли. Пусть производится n независимых испытаний, в каждом из которых может произойти событие A с одной и той же в каждом из испытаний вероятностью p и не произойти с вероятностью q = 1 - p. Вероятность того, что при этом событии A появится ровно m раз, а событие  (не A) n-m раз, вычисляется по формуле

.

При больших n вычисления по этой формуле довольно сложны и технически трудны; для этого обычно используют приближенную формулу (локальную теорему Муавра-Лапласа), согласно которой

.

В теоретических и прикладных задачах часто приходится находить суммы вида

. При больших n, a и b такие вычисления требуют значительных усилий. Для их приближенного вычисления используется интегральная теорема Муавра - Лапласа, согласно которой

,
,
.

Обе теоремы дают очень высокую точность. Они относятся к так называемым предельным теоремам теории вероятностей.

Швейцарский математик Я. Бернулли (1654-1705) обнаружил фундаментальный факт теории, получивший название закона больших чисел в форме Бернулли. Пусть μ обозначает число появлений события A в n независимых испытаниях, в каждом из которых событие A наступает с вероятностью p.

Каково бы ни было число ε > 0, имеет место соотношение

,

т.е. что вероятность отклонения частоты μ / n появления события от p =  вероятности этого события больше, чем на ε, стремится к 0.

Наряду со случайными событиями в теории вероятностей и ее применениях рассматривают случайные величины. Представим себе, что при каждом наблюдении некоторая величина принимает какое-то значение в зависимости от случая; например, число космических частиц, попадающих за данный промежуток времени на определенную площадку поверхности; число обрывов пряжи, изготовленной из хлопка определенного сорта и заданного номера, при испытаниях на разрыв. Таких примеров можно привести сколько угодно.

Случайные величины различаются как теми значениями, которые они способны принимать, так и вероятностями, с которыми эти значения принимаются. Так, число вызовов от абонентов на телефонной станции за промежуток времени t может быть любым целым числом: 0, 1, 2, … . Как показывают многочисленные наблюдения, вероятность того, что число вызовов окажется равным k, согласуется с формулой Pk(t) = (1/k!)(λt)ke-λt, где λ - некоторая положительная постоянная.

Скорость молекулы газа также случайна и может принимать любые значения. Этих значений столько же, сколько положительных чисел. Как в этом случае задавать вероятности этих значений? Математики пошли по такому пути: стали определять не вероятность каждого из возможных значений, а вероятность того, что случайная величина ξ примет значение меньшее, чем заданное значение x:P{ξ<x} = F(x). Функция F(x) получила наименование функции распределения случайной величины ξ. Из теоремы сложения легко вывести следующее важное равенство: P{a ≤ ξ < b} = F(b) - F(a), позволяющее по функции распределения определять вероятность выполнения указанного неравенства.