ЭКСТРЕМУМ ФУНКЦИИ

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось Ox вдоль ровной стороны пилы, а ось Oy - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Рис. 1

Совершенно очевидно, что и в точке a1, и в точке a2 значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке b2 - наименьшим в сравнении с соседними точками. Точки a1,a2,b2 называются точками экстремума функции (от латинского extremum - «крайний»), точки a1 и a2 - точками максимума, а точка b2 - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция f(x) в точке x0 имеет максимум, если найдется интервал, содержащий точку x0 и принадлежащий области определения функции, такой, что для всех точек x этого интервала оказывается f(x) < f(x0). Соответственно функция f(x) в точке x0 имеет минимум, если для всех точек некоторого интервала выполняется условие f(x) > f(x0).

На рис. 2 и 3 приведены графики функций, имеющие в точке x=0 экстремум.

Рис. 2

Рис. 3

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке b1 она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое f(x) ≤ f(x0)  (f(x) ≥ f(x0)), то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка x плоской площадки - отрезка [x1,x2] является точкой нестрогого максимума.

Рис. 4

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция f(x) в точке x0 имеет экстремум. Если в этой точке существует производная f'(x0), то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Рис. 5

Рис. 6

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке x0 производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка x0 будет точкой минимума. Напротив, точка x0 будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию y = x3(x - 5)2.

Найдем ее производную: y' = 5x2(x-5)(x-3).

Определяем стационарные точки: x1 = 0, x2 = 3, x3 = 5. Нетрудно заметить, что в интервалах между стационарными точками знак производной не изменяется, на каждом из интервалов он отмечен на рис. 7. Используя достаточное условие экстремума, можно сделать заключение: в точке x1 = 0 экстремума нет; точка x2 = 3 - точка максимума; точка x3 = 5 - точка минимума.

Рис. 7

Находим значения функции в точках экстремума: y(3) = 108, y(5) = 0. График функции показан на рис. 8.

Рис. 8

Заметим, что возможны случаи, когда экстремум достигается в точке, в которой производная не существует. Таковы точки экстремума у профиля пилы, пример такой функции дан и на рис. 1.

Задачи на максимум и минимум имеют важнейшее значение в физике, механике, различных приложениях математики. Они были теми задачами, которые привели математику к созданию дифференциального исчисления, а дифференциальное исчисление дало мощный общий метод решения задач на экстремум с помощью производной.