K главе 13
13.1. Множитель ?2 sin (x + ?/4) замените на sin x + cos x.
13.2. Левую часть можно преобразовать так, чтобы она содержала множителем выражение, стоящее в правой части.
13.3. Выразить левую часть уравнения через sin x и cos x так, чтобы оказалось возможным разложение ее на множители.
13.4. Если преобразовать в сумму произведение синусов двух функций и произведение косинусов этих же функций, то получим сопряженные выражения. Поэтому целесообразно заменить тангенсы через синусы и косинусы соответствующих аргументов.
13.5. Если записать 1/tg x вместо ctg x, то после простых преобразований (следите за их равносильностью) придем к распадающемуся уравнению.
13.6. Прибавить к левой и правой частям уравнения tg 3x. Тогда слева можно вынести за скобки число 3, а справа tg 3x.
13.7. Нетрудно заметить, что множитель sin (x + ?/4) можно вынести в левой части уравнения за скобки, так как он получается при преобразовании суммы sin x + cos x в произведение.
13.8. Перенести tg 2x в правую часть и привести обе части уравнения к виду, удобному для логарифмирования.
13.9. Избавиться от иррациональностей с помощью перехода под радикалами к функциям половинного аргумента. Использовать условие, что 0 < x < 2?, и постараться раскрыть знаки абсолютной величины.
13.10. Перенести sin ? в левую часть и привести полученную сумму к виду, удобному для логарифмирования. Стоящий в правой части sin x выразить через функции половинного аргумента.
13.11. Рассмотреть случаи, позволяющие раскрыть знаки абсолютной величины; задача сведется к решению двух уравнений и к выбору тех значений x, которые попадают в указанный интервал.
13.12. Вначале следует посмотреть, не стоит ли под радикалом полный квадрат какого-то выражения. Число 16 нам, скорее всего, не помешает, а вот число 17 менее удобно для последующих преобразований. Чтобы освободиться от его присутствия, удобно вынести под радикалом sec? x за скобки, а оставшееся в скобках выражение записать через sin x.
13.13. Перенести все члены уравнения в левую часть и разложить на множители с тем, чтобы появилась возможность избавиться от большинства радикалов.
13.14. Выразить sin 4x через tg 2x. Это тождество условное, поэтому нужно убедиться в равносильности полученного уравнения данному.
13.15. Перейти к функциям sin x и cos x.
13.16. Правую часть уравнения можно сократить на cos 2x, добавив условие cos 2x ? 0.
13.17. С помощью универсальной подстановки (через тангенс половинного угла) это уравнение может быть сведено к кубичному уравнению относительно у = tg x/2. Равносильное ли получится уравнение?
13.18. Понизить степень.
13.19. Левую и правую части можно привести к виду, удобному для логарифмирования.
13.20. Уравнение упростится, если преобразовать произведения, стоящие в левой его части, в разность косинусов. Оно станет квадратным относительно у = cos x. (!)
13.21. Выразить sin 4x через sin x и cos x и вынести sin x за скобки после переноса в левую часть.
13.22. Раскрыть скобки и каждое из ста произведений преобразовать в сумму. (!)
13.23. Каждое произведение преобразовать в разность косинусов. (!)
13.24. Выразить cos 4x + 1 через cos 2x.
13.25. Произведение косинусов может равняться единице, если либо оба косинуса равны единице, либо оба равны минус единице.
13.26. Представить единицу в виде sin? x + cos? x.
13.27. Уравнение таково, что не остается надежд на упрощения в результате тригонометрических преобразований. Поэтому следует попытаться воспользоваться оценками. Во-первых, выражение, стоящее в левой части, всегда неотрицательно, кроме того, cos4 x ? 0; следовательно, и cos 3x ? 0. Во-вторых, слева стоит сумма квадратов, которую разумно дополнить до полного квадрата.
13.28. Обратить внимание на то обстоятельство, что левая часть уравнения не может стать меньше единицы, а правая не может превзойти единицу.
13.29. Второе уравнение легко свести к виду sin (2x ? у) = 0, откуда у = 2x ? ?k. При подстановке в первое уравнение получим
4 tg 3x = 3 tg 4x.
Это уравнение удобнее преобразовать к виду
4(tg 4x ? tg 3x) = tg 4x,
чем к виду
3(tg 4x ? tg 3x) = tg 3x,
так как множитель 4 удобнее при тригонометрических преобразованиях.
13.30. Второе уравнение легко решается преобразованием его левой части в разность косинусов; в результате получится соотношение 2у = ?/2 ? x + k?. Прежде чем им воспользоваться, следует первое уравнение привести к виду, удобному для логарифмирования.
13.31. Левые части первого и второго уравнений нетрудно выразить через u = sin x и v = sin у.
13.32. Второе уравнение существенно упростится, если его левую часть преобразовать в сумму.
13.33. Из системы можно исключить x, если воспользоваться основным тригонометрическим тождеством
sin? ? + cos? ? = 1.
13.34. Нужно вначале решить первое уравнение, решение которого находится обычным путем. Найденное значение подставить во второе уравнение.
13.35. Разделив второе уравнение на первое, получим tg у = 2 tg x.
13.36. Удобно перейти к уравнениям относительно одной тригонометрической функции. При этом нужно следить за равносильностью.
13.37. Если возвести каждое уравнение в квадрат и полученные уравнения сложить, то мы исключим ?. Однако для нас важнее исключить либо x, либо у. Как это сделать?
13.38. Левую часть первого уравнения можно преобразовать в разность sin (x ? у) ? cos (x + у). Из второго уравнения определяется cos (x + у).
13.39. Правая часть уравнения не может стать больше четырех. Если ввести обозначения tg? x = u, tg? у = v, то нетрудно заметить, что левая его часть не может стать меньше четырех.
13.40. Способ 1. Умножить sin? x на тригонометрическую единицу sin? 3x + cos? 3x и сгруппировать члены, содержащие sin? 3x.
Способ 2. Перенести все члены в левую часть и выделить полный квадрат разности 2 sin x ? sin? 3x. Оставшиеся члены образуют неотрицательное выражение.
13.41. Способ 1. Преобразовать сумму тригонометрических функций cos x + cos у в произведение, а cos (x + у) выразить через косинус половинного аргумента.
Способ 2. Раскрыть cos (x + у) по формуле косинуса суммы.
13.42. Вопрос задачи естественно поставить следующим образом: при каких а и b равенство
tg x + tg (а ? x) + tg x tg (а ? x) = b
является тождеством (неабсолютным)?
13.43. Вначале следует попытаться оценить снизу левую часть уравнения, так как верхняя оценка правой части очевидна:
12 + ? sin у ? 12,5.
13.44. Перенести sin Зx в левую часть уравнения и преобразовать sin x ? sin Зx к виду, удобному для логарифмирования.
13.45. После раскрытия скобок произвести упрощения.
13.46. Условие записано таким образом, что введение нового неизвестного
является очевидным шагом к решению уравнения. Мы придем к квадратному уравнению относительно у.
13.47. В задаче требуется решить систему двух уравнений с одним неизвестным и выбрать решения, удовлетворяющие ограничению |x| < 5. Было бы заблуждением пытаться свести эти два уравнения в одно с помощью подстановки или какого-либо другого преобразования. Можно решить каждое в отдельности и отыскать общие корни. Однако попытайтесь использовать особенности данной системы.
13.48. Так как выражений, схожих с cos 6x/5 , в условии больше нет, то, скорее всего, cos 6x/5 преобразовывать не следует. В числителе левой части tg x естественно вынести за скобки. Выражение 3 ? tg?x, оставшееся в скобках, удобнее преобразовать, заменив tg? x на
13.49. Воспользуйтесь тем, что
13.50. Разбить 4 ctg 2x на слагаемые и в левой части образовать выражения 2(tg x + ctg 2x), tg x/2 + ctg 2x, ctg 2x ? ctg Зх. Преобразовать каждое из этих выражений и затем преобразовать все уравнения к равной нулю дроби, у которой числитель и знаменатель — произведения тригонометрических функций.
13.51. Сделайте преобразование, имея в виду, что sin t ? 0, cos t ? 0, и воспользуйтесь соотношениями: