К главе 15

15.1. Неравенство сводится к квадратному, если положить logsin x  2 = y. При этом необходимо следить за равносильностью преобразований.

15.3. Поскольку основание логарифма больше единицы, неравенство между логарифмами можно заменить таким же неравенством между cos x и tg x.

15.4. Остается перейти к системе тригонометрических неравенств, равносильной логарифмическому неравенству. При этом нужно помнить, что все функции, стоявшие в условии под знаками логарифма, должны быть положительными.

15.5. Для дальнейшего нужно иметь в виду, что условие 0 < |а| < 1 не равносильно неравенству ?1 < а < 1.

15.6. При дальнейшем решении мы столкнемся с выбором целочисленного аргумента. Следует помнить, что мы имеем дело с |lg x|, а не с lg x.

15.7. Неравенство равносильно условию, что знаменатель положителен, если при этом arccos (x? ? 3x + 2) существует и отличен от нуля.

15.8. Если 1 ? x > 0, то правая и левая части неравенства попадают в интервал от 0 до ?/2 , который является общим интервалом монотонности для тангенса и косинуса. Если взять косинус от правой и левой частей неравенства, а знак неравенства изменить на противоположный, то получим неравенство, равносильное данному.

15.9. Неравенство 4x ? x? ? 3 > 1 удовлетворяется лишь при x = 2. Докажите, что тогда оба сомножителя должны быть раны единице.

15.10. Первая система не имеет решения, поскольку из условия А = 0 следует, что tg x = 1. Но tg x стоит в основании логарифма и не может быть равным единице. Остается решить вторую систему, которую можно упростить, заметив, что tg x > 1.