К главе 16

16.3. При исследовании нужно помнить, что отрицательное число в дробной степени не имеет для нас смысла.

16.4. Решив простейшее тригонометрическое уравнение, получим показательное уравнение, которое нужно исследовать, в зависимости от значений, принимаемых целочисленным аргументом.

16.5. Вспомнить, когда произведение синусов и косинусов может равняться единице.

16.7. Полученное уравнение легко решить, если записать sin? x = = sin x (1 ? cos? x). При решении распадающегося уравнения, которое получится в результате такой замены, нужно постоянно иметь в виду ограничения.

16.8. При решении удобно на время забыть о возникающих ограничениях, а в конце проверить, для каких из найденных значений неизвестного они выполняются.

16.9. Использовать тот факт, что x > 0.

16.10. При исследовании полезно иметь в виду, что cos x ? 1 и дискриминант квадратного уравнения не должен быть отрицательным.

16.11. Удобно отдельно рассмотреть случаи а ? ?1, а ? ?1, когда данное уравнение имеет неотрицательный дискриминант.

16.12. Вы должны получить систему, состоящую из двух уравнений, трех неравенств и двух ограничений ?.

16.13. Обозначив 4cos? ?x через u (u > 0), найдем, что левая часть, равная 4/u + u, не может стать меньше 4. Чтобы оценить квадратный трехчлен, стоящий в правой части, можно выделить полный квадрат.

16.14.