K главе 3

3.1. Чтобы связать участвующие в задаче элементы, нужно отрезок ОА луча, перпендикулярного к ребру, спроецировать на другую полуплоскость. Проекцию ОВ этого отрезка спроецировать в отрезок ОС, лежащий на втором луче.

3.2. Чтобы связать данные углы с величиной угла, который нужно найти, следует спроецировать катеты треугольника на плоскость P и построить искомый угол.

3.3. При проецировании угла ? на плоскость P возникает четырехгранный угол, в котором три плоских угла даны, а два двугранных угла прямые. Чтобы установить связь между плоскими углами, нужно пересечь этот четырехгранный угол плоскостью Q, перпендикулярной к плоскости P.

3.4. Если спроецировать искомую прямую, параллельную а, на плоскость, перпендикулярную к а, то мы получим точку. Спроецируйте на эту же плоскость три оставшиеся прямые.

3.5. Начать нужно с построения искомого угла. Для этого прямые AB и SC нужно перенести в одну точку. Если сместить прямую SC, то она «повиснет в воздухе» и угол, который мы получим, не будет связан с треугольником. Поэтому проведем через току C прямую CD, параллельную AB; угол SCD искомый.

3.6. Лучи Аx и Вy удобно расположить так, как показано на рис. I.3.6. Утверждение, что ОК = АО, равносильно утверждению, что АM = MK (рассмотрите прямоугольные треугольники ОАМ и OKM).

3.7. Если такое сечение четырехгранного угла существует, то в результате параллельного сдвига плоскости этого сечения мы получим новую плоскость, пересечение которой с четырехгранным углом — тоже параллелограмм. Поэтому строить сечение можно в любой точке ребра четырехгранного угла.

3.8. Если продолжить DE и BC до пересечения в точке F, то BD — средняя линия в треугольнике EFC (рис. I.3.8). Площадь треугольника DEА равна половине площади треугольника FEA.

3.9. Чтобы ответить на вопрос задачи, нужно определить высоту H пирамиды. Каждый из данных двугранных углов можно измерить с помощью линейного угла, опирающегося на высоту H. Остается использовать тот факт, что в основании лежит правильный треугольник.

3.10. Докажите, что высота, проведенная в треугольнике АDВ через вершину D, проходит через середину E основания AB. Тогда интересующий нас двугранный угол измеряется линейным углом DEC.

3.11. Условия задачи отражены на рис. I.3.11. Сторона а основания известна, так как известна площадь основания.

3.12. Аналогичное построение на плоскости приводит к образованию треугольника, подобного данному, с коэффициентом подобия ?. Поэтому и здесь следует постараться выяснить, подобны ли рассматриваемые тетраэдры.

3.13. Если О — центр шара, касающегося боковых граней пирамиды в точках О1, О2 и О3 (рис. I.3.13), то легко установить, что SB1 = SB2 = SB3. Если мы сумеем доказать равенство треугольников А21 и А23, то установим, что в основании пирамиды лежит правильный треугольник.

3.14. Достроить усеченную пирамиду до полной и рассмотреть высоты пирамид, имеющих три основания, о которых идет речь в условии.

3.15. Построить угол между скрещивающимися прямыми можно, если параллельно перенести их так, чтобы они проходили через одну точку. В качестве такой точки удобно выбрать вершину А основания пирамиды. Если мы достроим треугольник АВС, лежащий в основании, до параллелограмма АВСЕ (рисунок сделайте самостоятельно), то угол DАЕ будет искомым. Образовавшаяся в результате четырехугольная пирамида будет состоять из ребер данной длины, за исключением ребра .

3.16. Тетраэдр разбивается на две пирамиды с общим основанием — плоскостью сечения. Данное отношение объемов позволяет найти отношение высот этих пирамид и, следовательно, отношение синусов искомых углов.

3.17. Условия задачи отражены на рис. I.3.17. Нас интересует отношение площадей треугольников DАМ и DМS, в то время как все известные элементы сосредоточены в плоскости KSЕ. Поэтому нужно связать элементы треугольников DАМ и DМS с элементами треугольника KSЕ.

3.18. Использовать условие задачи, согласно которому высота пирамиды, опущенная из вершины D, проходит через точку пересечения высот основания АВС, с тем, чтобы доказать, что треугольники АDВ и АDС прямоугольные.

3.19. В пирамиде SАВС (рис. I.3.19) равнобедренные треугольники АSВ и АСВ равны. Следовательно, проведенные в них высоты из вершин S и С упадут в точку D — середину AB.

3.20. Если верхний из двух равных треугольников, лежащих один на другом в плоскости, начать вращать вокруг из общей стороны, то образованный ими двугранный угол может быть как острым, так и тупым. Поэтому придется рассмотреть два случая.

3.21. Если в основании АВС пирамиды провести высоту ВD, то отрезок SD разделит угол АSС пополам.

3.22. Покажите, что отрезки AB и CD взаимно перпендикулярны. Центр описанного шара лежит на их общем перпендикуляре KM, где K — середина СD, M — середина AB.

3.23. Расстояние от основания высоты до бокового ребра измеряется отрезком перпендикуляра, опущенного на боковое ребро. Чтобы связать участвующие в задаче величины, нужно измерить двугранный угол ? линейным углом, построенным в точке бокового ребра, которая является основанием этого перпендикуляра. Следовательно, придется построить сечение пирамиды, проходящее через основание высоты и перпендикулярное к боковому ребру пирамиды.

3.24. Чтобы в сечении получился квадрат, плоскость сечения необходимо провести так, чтобы она пересекала все четыре грани пирамиды (иначе мы получили бы в сечении треугольник). Докажите, что если KLNM — квадрат (рис. I.3.24), то плоскость KLNM параллельна двум скрещивающимся прямым AB и СD.

3.25. Для того чтобы найти наиболее рациональное решение задачи, поставьте пирамиду на одну из боковых граней (рис. I.3.25), а затем примените сравнение объемов.

3.26. Вписать в пирамиду куб значит расположить его так, чтобы нижнее основание куба лежало на основании пирамиды, а верхнее основание куба было вписано в треугольник, полученный в горизонтальном сечении пирамиды (рис. I.3.26).

3.27. K решению этой задачи удобно подойти аналитически, рассмотрев общий случай. Предположим, что в сечении образовался некоторый треугольник со сторонами а, b и с. Полезно рассмотреть пирамиду, в основании которой лежит этот треугольник, а вершиной является вершина трехгранного угла.

3.28. По условию задачи попарно равны именно те ребра тетраэдра, которые лежат на скрещивающихся прямых. Использовать это условие можно, если расположить тетраэдр так, чтобы ребро AB лежало в горизонтальной плоскости P, а ребро было параллельно этой плоскости.

3.29. Нужно построить расстояние между прямыми AB и CD. Для этого через один из отрезков, например через AB, надо провести плоскость P, параллельную CD.

Решение естественно начать с построения плоскости P, проходящей через одно ребро (AB) и параллельной другому (CD). Удобный чертеж можно получить, повернув пирамиду вокруг AB так, чтобы плоскость P стала горизонтальной.

Далее нужно построить угол между скрещивающимися прямыми AB и CD. Напомним, что для этого достаточно построить прямую, пересекающую одну из них и параллельную другой.

3.30. Плоскость А1ВС отсекает от призмы четырехугольную пирамиду. Расположим ее так, как показано на рис. I.3.30. То, что в эту пирамиду вписан шар радиусом R, означает, что в треугольники В1А1С1 и 1Е вписаны окружности радиусом R.

3.31. В силу соображений симметрии центр шара, о котором идет речь в задаче, совпадает с центром шара, вписанного в правильный тетраэдр.

3.32. Если куб преобразовать подобно, выбрав в качестве центра подобия точку О, то диагональ, проходящая через точку О, сохранит свое направление в пространстве.

3.33. Составным элементом этой задачи является соотношение, связывающее разность углов треугольника, прилегающих к некоторой его стороне, с углом между этой стороной и биссектрисой противоположного угла.

3.34. Диагонали, расстояние между которыми нужно найти, будут лежать на скрещивающихся прямых. Расстояние между скрещивающимися прямыми равно расстоянию между определяемыми ими параллельными плоскостями.

3.35. Так как сфера с центром в точке О расположена симметрично относительно всех трех ребер, выходящих из А, то О должна лежать на диагонали куба.

3.36. Вначале нужно извлечь информацию из того обстоятельства, что проекции каждой стороны четырехугольника на взаимно перпендикулярные плоскости равны. Отсюда следует, что каждая сторона четырехугольника параллельна плоскости, делящей угол между взаимно перпендикулярными плоскостями пополам.

3.37. Задачу можно свести к такой: доказать, что объем конуса меньше куба его образующей. (!)

3.38. Введите линейные элементы, характеризующие конус, например высоту H и радиус основания ?. Затем величины H, ? и p выразите через радиусы R и r шаров.

3.39. Чтобы использовать данное в условии отношение объемов двух конусов, нужно выразить радиус основания одного конуса через радиус основания другого. Для этого придется внутренний конус, свободно вращающийся в шаре, закрепить так, чтобы образующие конусов были параллельны.

3.40. Не следует начинать решение с построения общего чертежа, который окажется весьма громоздким. Удобнее вначале провести анализ условия и вспомнить, что центр сферы, вписанной в двугранный угол (рис. I.3.40), лежит в плоскости, проходящей через точки касания В и С и перпендикулярной к ребру этого угла. Линейный угол ВЕС делится прямой EO1 пополам, а отрезки СЕ и ВЕ равны. Если сделать соответствующие построения для треугольной пирамиды, то появится возможность использовать условие, что данная пирамида правильная.

3.41. Центры четырех шаров, касающихся основания конуса, лежат в одной плоскости (рис. I.3.41). Если мы проведем осевое сечение конуса через O1 и О3, то сможем связать высоту H и радиус основания R конуса с радиусом r.

3.42. Необходимые построения показаны на рис. I.3.42. Плоскость EMNF проходит через ось цилиндра и перпендикулярна к основанию пирамиды; F — точка касания окружности основания цилиндра со стороной ; M — точка касания с гранью ASB. Отрезки МК и EF взаимно перпендикулярны, KF — искомая величина.

3.43. Условия задачи отражены на рис. I.3.43. Ввести линейные элементы, определяющие конус, и выразить их через ребро куба.

3.44. Поскольку в усеченную пирамиду вписан шар, то объем пирамиды можно представить в виде произведения одной трети радиуса шара на полную поверхность пирамиды. Обозначим стороны нижнего и верхнего основания через а и b соответственно. Воспользовавшись сравнением объемов, — в качестве второго выражения для объема нужно взять обычную формулу

 — выразим площадь боковой грани пирамиды через а и b.

3.45. Нет необходимости изображать сами шары. Достаточно изобразить их центры и точки их касания с плоскостью.

3.46. Фигуры, о которых говорится в условии задачи, расположены так, что у них имеются две плоскости симметрии. Первая плоскость симметрии пройдет через ребро данного двугранного угла и через центр меньшего шара. На этой плоскости окажутся центры двух других шаров. Вторая плоскость симметрии будет перпендикулярна к ребру двугранного угла и тоже пройдет через центр меньшего шара. Поэтому достаточно сделать каркасный чертеж, на котором изобразить лишь одну из четырех равных частей данной конфигурации.

3.47. У рассматриваемой фигуры будут три плоскости симметрии, проходящие через ось конуса и центр одного из шаров. Проекции центров трех шаров на плоскость P образуют равносторонний треугольник, сторона которого равна 2R. Сделать каркасный чертеж.

3.48. Чтобы использовать условие задачи, нужно рассмотреть два соседних конуса. При этом нет необходимости рисовать их целиком, достаточно изобразить оси, общую образующую и образующие, по которым конусы касаются плоскости.

3.49. По условию сфера, радиус которой нужно найти, вписана в трехгранный угол А (рис. I.3.49). Это означает, что ее центр лежит на высоте АО. Однако все точки высоты АО (кроме концов) лежат внутри сферы, построенной на AB. Следовательно, касание двух сфер может быть только внутренним.

3.50. Искомое тело можно представить себе как часть пространства, заполненную в результате вращения вокруг оси РР (рис. I.3.50) треугольника SАВ и всех сечений пирамиды, проходящих через вершину S параллельно AB. Таким сечением является, например, треугольник SEF, изображенный на рис. I.3.50.

3.51. Способ 1. Задачу можно решить аналитически, если выразить полную поверхность конуса через радиус вписанного в него шара и угол а (рис. I.3.51; на нем изображено осевое сечение конуса). Затем следует воспользоваться соотношением Sпк = 2Sш. В результате получим тригонометрическое уравнение относительно ?.

Способ 2. Объем конуса можно представить себе как сумму объемов V1 и V2  где V1 — объем тела, полученного вращением треугольника ASO вокруг оси конуса, а V2 — объем конуса с осевым сечением АОВ.

3.52. Пусть АВС и А1В1С1 — основания призмы, а В1В — ее ребро, принадлежащее двум равновеликим граням. Докажите, что вершина В1 проецируется тогда на биссектрису одного из углов, образованных прямыми AB и BC. Может ли проекция вершины В1 оказаться на биссектрисе внешнего угла треугольника АВС?

3.53. О пирамидах не сказано, какие они. Поэтому следует попытаться заполнить ими весь объем куба.

3.54. Высота SP пирамиды SABС (рис. I.3.54) фиксирована и равна 4. В основании правильный треугольник АВС со стороной 6. Кроме того, основание высоты не покидает треугольник АВС. Следовательно, вершина S пирамиды SАВС лежит в плоскости, параллельной плоскости треугольника АВС, и отстоящей от нее на расстоянии, равном 4. Если мы построим на основании АВС прямую призму А1В1С1ABC с ребром 4, то вершина S пирамиды SАВС будет принадлежать верхнему основанию этой призмы.