Глава 7 Алгебраические преобразования
Следующие ниже замечания относятся не только к этой главе, они имеют более общий характер.
Множества точек x числовой оси, удовлетворяющих неравенствам
1) а < x < b;
2) а ? x ? b;
3) а ? x < b;
4) а < x ? b;
5) x > а;
6) x < а;
7) x ? а;
8) x ? а,
где а < b, называются интервалами и обозначаются соответственно (а, b); [а, b]; [а, b), (а, b]; (а, +?); (??, а); [а, +?); (??, а].
Интервалы 1), 5) и 6) называются открытыми; интервал 2) называется замкнутым; интервалы 3), 4), 7) и 8) называются полуоткрытыми. Иногда вместо терминов: открытый интервал, замкнутый интервал, полуоткрытый интервал используют соответственно термины: промежуток (или интервал), отрезок (или сегмент), полуотрезок.
По определению
Для арифметического корня имеет место формула
?а? = |а|.
Иногда приходится пользоваться формулами куба суммы и разности чисел в виде
(а + b)? = а? + b? + 3аb(а + b);
(а ? b)? = а? ? b? ? 3аb(а ? b).
Следующая формула называется формулой сложного радикала:
(все подкоренные выражения должны быть неотрицательными).
По определению
где а ? 0, m, n — натуральные числа и корень арифметический.
Из этого определения следует, что степени с отрицательным основанием и дробным показателем считаются не имеющими смысла. Например,
По определению
По определению
?0 = 1 при а ? 0.
Чтобы избежать недоразумений, удобно договориться, что знак корня используется либо для обозначения арифметического корня из неотрицательного числа, либо отрицательного корня нечетной степени из отрицательного числа.
Таким образом,
Для арифметических корней и корней нечетной степени из отрицательных чисел справедливо правило умножения и деления корней:
Правило, в силу которого показатель корня и показатель подкоренного выражения можно умножить на одно и то же натуральное число, справедливо для арифметических корней и не справедливо для корней нечетной степени из отрицательных чисел.
Замечание. В качестве показателя корня используются только натуральные числа. Иногда встречаются задачи, где показатели — достаточно сложные алгебраические выражения. Во избежание путаницы лучше знак корня в таких задачах не использовать, а прибегать к дробным показателям степени.
7.1. Упростите выражение
7.2. Упростите выражение
7.3. Упростите выражение
После упрощения выражения определите его знак в зависимости от x.
7.4. Упростите выражение
7.5. Упростите выражение
где
7.6. Вычислите значения выражения
7.7. Преобразуйте выражение
так, чтобы оно не содержало сложных радикалов.
7.8. Разложите на линейные относительно x, у, z, u множители выражение
(xy + zu)(x? ? y? + z? ? u?) + (xz + yu)(x? + у? ? z? ? u?).
7.9. Докажите, что
7.10. Докажите, что если а + b + с = 0, то
7.11. Докажите, что при всех действительных значениях x и у имеет место равенство
7.12. Докажите, что
для любых действительных x и у, имеющих одинаковые знаки.
7.13. Докажите, что из условия
следует
(а + b + с)? = 27аbс.
7.14. Квадратный трехчлен 24х? + 48x + 26 есть разность кубов двух линейных функций с положительными коэффициентами. Найдите эти функции.