K главе 22

22.1. Перенести acrtg 7/23 в правую часть, после чего оценить значения обеих частей с тем, чтобы они попали в интервал (0, ?/2). (!)

22.2. Каждое из двух первых слагаемых лежит в интервале (0, ?/4). Это позволяет воспользоваться формулой тангенса суммы и заменить два первых слагаемых одним.

22.3. Начать нужно с представления в виде значения одной тригонометрической функции первого и третьего слагаемых. Чтобы их сумма попала в область главных значений арккотангенса, придется прибавить к ней ?. (!)

22.4. Если 0 ? x ? 1, то сумма существует и лежит в интервале [0, ?], т. е. в интервале монотонности косинуса.

22.5. Начать нужно с выяснения, в каком интервале лежит ?(x? + x ? 3), если 0 ? x ? ?3 ? 1/2.

22.6. Убедившись в существовании арксинусов при 0 ? x ? 1, перенести ?/4 в левую часть, а вычитаемое — в правую, затем доказать, что левая часть равенства будет лежать в интервале монотонности синуса. (!)

22.7. Так как x < ?1, то значение каждой функции, входящей в правую часть, можно уточнить с тем, чтобы сумма попала в интервал монотонности синуса и тангенса. (!)

22.8. Из данного уравнения можно найти значения arcsin x. Из этих значений остается выбрать те, которые лежат в области значений арксинуса. (!)

22.9. Поскольку arcsin x — нечетная функция, то одновременно с корнем x уравнение имеет корень ?x. Это позволяет искать лишь неотрицательные корни.

22.10. Из условия следует, что x > 0. Левая часть заключена в интервале [0, ?], который является интервалом монотонности косинуса.

22.11. Воспользовавшись тем, что 2 + cos x > 0 и 2 cos? x/2 ? 0, можно уточнить интервал значений левой части уравнения.

22.12. Левая и правая части лежат в интервале монотонности синуса. (!)

22.13. Уточнение интервалов с тем, чтобы получить равносильное уравнение, приведет к нерациональному способу решения. Проще перенести, например, arctg (x + 1) в правую часть и взять котангенсы от обеих частей. Каким образом может быть нарушена равносильность?