К главе 20
20.1. Воспользоваться оценкой
1/(1 + k)? < 1/(1 + k)k.
20.2. Воспользоваться тем, что
20.4. Умножить правую часть на а ? 1 и привести ее к виду
20.5. Разбить полученную сумму на три алгебраических слагаемых: 2n, произведение n на сумму чисел от 1 до n ? 1 и сумму квадратов этих же чисел.
20.6. Бесконечная геометрическая прогрессия имеет сумму, если она бесконечно убывающая, т. е. |2x| < 1.
20.8. Рассмотреть разность Sn ? Snx?, в которой выделить геометрическую прогрессию.
20.9. Полученные равенства сложить и воспользоваться известными формулами для Sn, Sn?, Sn?.
20.10. Подсчитайте число четных (нечетных) членов, стоящих до n-й группы.
20.11. Каждое слагаемое после домножения на 2 sin ?/2n представить в виде разности косинусов.
20.12. Нетрудно заметить, что ряд 2S отличается от ряда S на величину, которая легко может быть сосчитана.
20.13. Запишем два соседних члена ряда: