АНАЛИЗ МАТЕМАТИЧЕСКИЙ
В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.
Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.
Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.
Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.
«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье
Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.
Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.
Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.
Каковы же предпосылки появления математического анализа?
К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.
Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ