ФЕРМА МАЛАЯ ТЕОРЕМА

We use cookies. Read the Privacy and Cookie Policy

Знаете ли вы об удивительном свойстве, которым обладают числа, составленные из одних девяток? Каково бы ни было простое число p, отличное от 2 и 5, всегда можно указать такое число, составленное из одних девяток - 9999...99, - что оно будет делиться на p. Так, на 3 делится 9, на 7 - число 999999, на 11 - число 99, на 13 - опять-таки число 999999. Чтобы получить число, делящееся на 17, придется взять число из 16 девяток, на 19 - число из 18 девяток. И всегда можно быть уверенным, что нужное число найдется, хотя и может оказаться очень длинным.

На чем основано доказательство этого факта? Дело в том, что при делении с остатком на p может встретиться конечное число различных остатков: 0,1,2,...,p-1. Поэтому найдутся два числа из девяток (пусть одно - из l девяток, а другое - из m девяток, l > m), такие, что оба они при делении на p дают один и тот же остаток. Тогда число из l-m девяток будет делиться на p. Заметим, что обсуждаемое утверждение равносильно тому, что для всякого простого p, не равного 2 и 5, существует число вида 1000...00 (единица с нулями), дающее при делении на простое число p остаток 1. Это очень важное утверждение. На нем основана, например, периодичность бесконечной десятичной дроби, полученной при обращении обыкновенной дроби 1/p, где p ≠ 2 и p ≠ 5 (если выписывать последовательные десятичные знаки при делении 1 на p, то с некоторого места они начнут периодически повторяться).

Другая связь имеется с признаками делимости. Признак делимости на 3 основывается на том, что 9 делится на 3. Для того чтобы узнать, делится ли на 11 число , достаточно разбить его на двузначные числа справа налево:  (последнее число может оказаться однозначным), сложить эти числа, и если полученная сумма делится на 11, то на 11 делится и A, а если не делится, то и A не будет делиться. Этот признак делимости основывается на том, что 99 делится на 11. Аналогичный признак делимости с разбиением на трехзначные числа имеется для 37. Такие признаки делимости можно построить для всех простых чисел p, не равных 2 и 5, но они могут оказаться неудобными.

Естественно попытаться уточнить, сколько же в точности девяток надо взять, чтобы получилось число, делящееся на p. Оказывается, что всегда годится число, состоящее из p-1 девяток. Однако иногда достаточно и меньшего числа, но всегда это наименьшее число девяток l является делителем p-1. До сих пор не известен ответ на вопрос, волновавший еще Гаусса: конечно или бесконечно число таких p, для которых l=p-1 (так обстоит дело для p=7,17,19,23,47,...).

Утверждение о делимости чисел, составленных из девяток, является частным случаем значительно более общего утверждения, носящего название малой теоремы Ферма: если p - простое число, a - натуральное число, не делящееся на p, то ap-1 при делении на p дает остаток 1 (утверждение о девятках получается при a=10). «Меня озарило ярким светом», - писал Ферма, впервые сообщая об этом своем открытии в письме (1640). В самом деле, эта теорема стала одним из самых фундаментальных фактов в теории делимости натуральных чисел. Ферма не оставил доказательства теоремы, и первое известное доказательство принадлежит Л. Эйлеру. В заключение дадим формулировку этой теоремы, не содержащую ограничений на число a: если p - простое число, a - натуральное число, то ap - a делится на p.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ