АНДРЕЙ НИКОЛАЕВИЧ КОЛМОГОРОВ

We use cookies. Read the Privacy and Cookie Policy

(1903-1987)

Он рано начал проявлять разнообразные интересы. Учась в московской гимназии, Колмогоров увлекался биологией, физикой, историей. В 14 лет самостоятельно по энциклопедии стал изучать высшую математику. Вся жизнь и деятельность А. Н. Колмогорова была неразрывно связана с Московским университетом.

В университете молодой ученый примкнул к школе Н. Н. Лузина. В 20-е гг. лузинская школа переживала пору своего расцвета, активно работали П. С. Александров. Д. Е. Меньшов, Л. А. Люстерник. В возрасте 19 лет Колмогоров сделал крупное научное открытие – построил всюду расходящийся тригонометрический ряд. Его имя становится известным в научном мире. Занятия теорией множеств и тригонометрическими рядами пробудили у А. Н. Колмогорова интерес к теории вероятностей. Его книга «Основные понятия теории вероятностей» (1936), где была построена аксиоматика теории вероятностей, принадлежит к числу классических трудов в этой области науки.

А. Н. Колмогоров был одним из создателей теории случайных процессов. Ученому принадлежат фундаментальные научные открытия в классической механике, где после исследований И. Ньютона и П. Лапласа он сделал радикальный прорыв в решении основной проблемы динамики, касающейся устойчивости Солнечной системы. В гидродинамике (теории турбулентности) А. Н. Колмогорову принадлежат достижения, имеющие характер открытия законов природы. В 1956-1957 гг. ученый предпринял атаку на 13-ю проблему Гильберта, приведшую к ее полному решению (результат был получен учеником А. Н. Колмогорова – В. И. Арнольдом) и к дальнейшему развитию проблематики.

А. Н. Колмогоров обогатил науку во многих других областях: в математической логике, в топологии, математической статистике, функциональном анализе, теории дифференциальных уравнений и динамических систем, теории информации, занимался применением математических методов в теории стрельбы, лингвистике, биологии.

В конце жизни А. Н. Колмогоров сделал попытку вскрыть самую сущность понятий «порядок» и «хаос», показать, как хаотические процессы, воспринимаемые нами как случайные, возникают из детерминированных, но сложно устроенных явлений. Так возникла его концепция случайности как алгоритмической сложности.

В последние годы своей жизни ученый принимал деятельное участие в разработке вопросов математического образования в средней школе и университетах, внес огромный вклад в дело просвещения.

Многие крупнейшие академии и университеты мира избрали А. Н. Колмогорова в число своих членов, ему были присуждены Государственная (1941) и Ленинская (1965) премии, премии АН СССР им. П. Л. Чебышева и Н. И. Лобачевского, Международные премии Вольфганга (1963) и Вольфа (1981). Ученый удостоен звания Героя Социалистического Труда, награжден 7 орденами Ленина, орденами Трудового Красного Знамени и Октябрьской Революции, медалями.

А. Н. Колмогоров был неповторимой и многогранной личностью. Необыкновенная сила его разума, широта его культурных интересов, неустанное стремление к истине, благородство и бескорыстие его помыслов оказывали благотворное воздействие на всех, кто его знал.

------------------------------------------

Подчеркнем еще раз, что о вероятности события A мы говорим всегда лишь с предположением, что выполнен некоторый комплекс условий S. Если этот комплекс условий изменился, то, как правило, и вероятность A должна измениться. Например, утверждая, что при бросании игральной кости каждая сторона выпадает с одной и той же вероятностью, равной 1/6, мы исходим из такого комплекса условий S: кость имеет одинаковую плотность, является точным кубом и подбрасывается она наудачу.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ