2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
Напомним свойства хорд и секущих (рис. 196).
Рис. 196.
Для обоих случаев ОА ? ОВ = ОС ? OD.
В частности, если А совпадает с В (ОА – касательная), то ОА2= ОС ? OD.
Примеры решения задач
139. Дано (рис. 197):
ОА = 4, АВ = 3, CD = 2. Найдите ОС. (1)
Рис. 197.
Решение. Пусть ОС = х, тогда ОА ? ОВ = ОС ? OD; 4 ? 7 = х(х + 2);
Ответ:
140. Стороны прямоугольника равны а и b. На стороне а, как на диаметре, построена окружность. На какие отрезки окружность делит диагональ прямоугольника (рис. 198)? (2)
Рис. 198.
Решение. Из точки С проведена секущая СА и касательная CD к окружности. По известному свойству имеем: СР ? СА = CD 2;
Ответ:
Задача для самостоятельного решения
141. ОА – касательная; ОВ = 4; ВС = 3. Найдите длину ОА (рис. 199). (1)
Рис. 199.