Билет № 3
1. Геометрическое место центров описанной около треугольника и вписанной в треугольник окружностей (с доказательством).
2. Площадь четырёхугольника (без вывода).
3. Даны треугольник ABC и точка М на отрезке ВС. Выразите:
а) вектор СВ через векторы АС и АВ;
б) вектор МА через векторы ВА и ВМ.
4. В ромбе ABCD, где угол А острый, BE и BF – высоты. Угол между диагональю BD и высотой BF равен 40°:
а) докажите, что BE = BF.
б) найдите углы ромба.
5. В треугольнике ABC точки F и М лежат соответственно на сторонах АВ и ВС, причем CF = AM, а угол MAC = углу FCA. Докажите, что треугольник ABC равнобедренный.